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Systems Chemistry and Parrondo’s Paradox: Computational Models of 

Thermal Cycling  

 

Daniel C. Osipovitcha, Carl Barrattb, and Pauline M. Schwartz*a 

 

 

 

A mathematical concept known as Parrondo’s paradox motivated the development of several 

novel computational models of chemical systems in which thermal cycling was explored.  In 

these kinetics systems we compared the rates of formation of product under cycling temperature 

and steady-sate conditions.  We found that a greater concentration of product was predicted 

under oscillating temperature conditions.  Our computational models of thermal cycling suggest 

new applications in chemical and chemical engineering systems.  
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Introduction 

Systems chemistry is an important niche discipline that investigates the behavior of interacting 

chemical reactions (  ).  Like systems biology and systems engineering, a critical feature of 

systems chemistry is that unexpected outcomes may arise which may not be predicted form 

examining the behavior of the individual components of the system.  Complex behavior can arise 

over time from even simple systems.  For example, many investigators active in systems 

chemistry are pursuing the breaking of symmetry that may explain the generation of 

homochirality in prebiotic environments. 

 

The counterintuitive mathematical concept known as Parrondo’s paradox may provide insight 

into developing chemical model systems in which forced oscillating conditions would give rise 

to unexpected outcomes.  Parrondo’s paradox is the unexpected situation in which two specific 

losing strategies can, by alternating them, produce a winning outcome (1-3).  The complex 

statistical elements of Parrondo’s paradox are often demonstrated by means of gambling games.   

Figure 1 shows the outcome of the most simple form of Parrondo’s paradox; in this case, the 

outcomes of two strategies (Games A or B played alone) are “losing” but if the games are played 

alternately (ABABAB…) paradoxically the result is a “winning” outcome.  A more complete 

description of the mathematics behind Parrondo’s paradox and links to informative animations 

can be found at The University of Adelaide, School of Electrical Engineering, Official 

Parrondo’s Paradox Page (3). 

 

Parrondo’s paradox has generated a significant amount of activity since its presentation in 1999 

(4-13).  One of the earliest extensions was to use the Parrondo’s strategy to develop a 
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relationship with the paradoxical behavior of Brownian ratchets.   The inherent mechanism is 

described in some physical systems as the “rectification” of “noise” contributing to an 

unexpected outcome (5,6,8).   An interesting variation of a Parrondo’s paradox based game was 

described by Martin and von Baeyer positing that two slowlying winning games could be 

combined to generate a fast winning game (12).  Systems that demonstrate such paradoxical 

outcomes are understood in terms of the interactions of simple components whereby non-linear, 

asymmetric behavior emerges.  Importantly, applications of Parrondo’s paradox do not violate 

the Second Law of Thermodynamics despite the “something-for-nothing” impression. 

 

Our studies focused on finding a chemical analogy to Parrodo’s paradox – discovering a system 

of hypothetical chemical reactions which might produce a higher yield of a product when 

switching between conditions compared to steady-state conditions. 

  

 
Figure 1.  The Outcome of a Typical Set of 500 Games  

Using the Parrondo’s Paradox Strategies for Games A and B, Mod 2  
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Results and Discussion 

A simple stochastic chemical model based on Parrondo’s paradox 

To mimic the game strategies of Parrondo’s paradox, a reaction scheme with the production of 

alternate products from a common reactant was devised in which product B is considered the 

“losing” product and C is considered the “winning” product.  The reaction could be conducted 

under Condition I, Condition II or and alternating pattern of conditions, i.e. I  II  I  II  I   II ….. 

 

Table  1 describes some basic relationships between the game strategy that underlies Parrondo’s 

paradox and this simple chemical model system. 

 
Table 1.  Relationships Between Parrondo’s Paradox Strategies 

and a Model Chemical System 
   

  

 

 

 

 

 

 

 

Parrondo’s paradox 
game strategy 

Stochastic model  
of chemical system  

Games A/B Conditions I/II 
Winning outcome Accumulation of product C 
Losing outcome Accumulation of product B 
Probabilities Relative reaction rates 
ABABAB… 
switching 

Conditions I/II – oscillating 
conditions (temperature, light/dark, 
pH etc.) 

Games B1 vs B2 Condition II – catalyzed vs  
inhibited pathways 

MOD2  Activity of “catalyst” vs “inhibitor” 
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An example of a reaction strategy that is analogous to a Parrondo’s scheme is shown in Figure 2.  

In this case, Condition I is the alternate conversion of molecule A to products B or C following 

“probabilities” for each step analogous to relative reaction rates.   In Condition I, the relative rate 

of formation of B is greater than that for the formation of C.  Condition II has two arms in each 

of which A is converted to B or C.   In condition II, the relative rates depend on the presence of a 

catalyst (formation of C is faster than B) or inhibitor (formation of B is faster than C).   For 

Condition II alone, the overall rate of formation of B is greater than the rate of formation of C, 

i.e. “played” alone, B is the probable product.  If the relative reaction rates are chosen properly 

(as they are in this example), then under oscillating conditions the formation of C under the 

catalytic arm of Condition II is sorted out and the rate of formation of C is greater by changing 

between Condition I and the catalytic arm of Condition II.  

 
Figure 2.  Typical Probabilities/Relative Rates for Conversion of “A” to “B” or “C” 

in the Stochastic Model of a Chemical System Displaying Parrondo’s Paradox 

 

 

 

 

 

 
A simple Excel program was created using the program’s random number generator to calculate 

the accumulation of alternate products B and C from starting compound A and mimicking the 

game strategies of Parrondo’s paradox.  The program calculates the accumulation of products 

after 1000 iterations, i.e. reactive interactions converting molecule A to B or C.  The model is a 

stochastic model because relative rates are calculated at each iteration based on probabilities 
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determined by a random number generator.  Figure 4 shows the accumulation of B and C with 

Condition I alone, Condition II alone and oscillating conditions.   In this model, more C 

accumulates under the oscillating conditions than under either steady state.   

Figure 3.  Accumulation of Products Predicted from the Stochastic Model: (a) Condition I alone; (b) 
Condition II alone; (c) Cycling between Conditions I and II 

 

 

 

             

 
 
 
Deterministic chemical models of Parrondo’s paradox 

In the initial modlel, Conditions I and II could be various types of conditions.  For the 

deterministic models temperature was used because kinetics are easy to model.  This model was 

designed to displayed behavior reminiscent of Parrondo’s paradox was based on a multi-step, 

feedback, autocatalytic system aided by a temperature-sensitive catalyst; the catalyst was active 

at a low temperature (Y) and inactive at high temperature (X).  The chemical model is described 

by the following reactions.  “A” and “B” are reactants and “C” is the target product: 

 
          A + B              C      (uncatalyzed reaction)  
   A + B + Y              C + Y     (reaction catalyzed by Y) 
    C              2 B   (C is a dimer of B) 
 
               Y                 X           (the equilibrium between active   
        form of the catalyst (Y) and   
        inactive form of the catalyst(X)) 
 
These reactions and their kinetic constants are input into the Kintecus 3.96 program.  Kintecus is 

a powerful simulation program for chemical dynamics developed by James Ianni and is free for 
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academic use (31).  As a deterministic, Arrhenius-based program the inputs include: the reaction 

steps, energies of activation, the Arrhenius constants, reactant concentrations and temperature 

profiles.   The program assumes elementary reaction steps and solves numerically for the 

differential equations of the related rate laws.  The concentrations of participating species are 

calculated and displayed over time at either a fixed temperature or under varying temperature 

conditions.   

 

We describe here a typical set of conditions, the ABC Model, that highlight the paradoxical 

behavior that occurs under cycling temperature conditions.  Initial concentrations are [A] = 1M 

(constant), [B] = 1x10-4M and [X] = 1x10-3M.  

 
 

Figure 4 – The ABC Model - Input 
 
 
 
 
 
 

 
 
 
 
 
Figures 5a and 5b show the time course of the formation of C at fixed temperatures of 300K and 

480K, respectively.  Figure 6c shows the cycling temperature profile.  The cycling temperature 

conditions drive oscillations of the concentrations of X and Y which in turn generates an 

asymmetrical oscillating increase in the concentration of C.   The model predicts that at 300K, 

6.5x10-3M C would be generated in 15,000 sec (Figure 5a) and at 480K, 1.6x10-2M C would be 

generated in the same time frame (Figure 5b).  But, under oscillating temperatures (23 cycles in 

15000sec), considerably more C is formed and 1.25 x 10-1M C is generated (Figure 5d).   More C 
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is produced under oscillating temperature conditions than under any steady state temperature 

between 300K and 480K.  In the example we describe in Figure 5d, the concentration of C 

results from the square wave temperature profile (Figure 5c) which is easiest to analyze 

numerically (see next section).  Similar results are obtained with a sinusoidal oscillating 

temperature profile.    

Figure 5 – ABC Model: Synthesis of C at Steady State and Oscillating Temperature Conditions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

The paradoxical outcome of this model system was verified by examination of the differential 

equations that described the rate laws for the different steps of the reaction under different 

temperature profiles. The reactions 

Summary 
 
        Condition            Concentration of C 
                       at 15000 sec 
 
 300K                              0.0065M 
 480K                              0.016M 
Oscillating Temperatures          0.125M 

(d) (c) 

(a) (b) 
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      X Y Y X C B A B Y C Y A B C
k k k k k

            
1 2 3 4 5

2: : : :  
 
may be modeled using the following kinematic reaction equations: 
 

 

dX dt k X k Y dY dt k Y k X
dB dt k C k ABY k AB dC dt k C k ABY k AB
dA dt k ABY k AB

/ : /
/ /
/

    
      
 

1 2 2 1

3 4 5 3 4 5

4 5

2  

 
in which X represents the molar concentration of chemical X (initial value X0), etc., 

the reaction constants k1,…,k5 are obtained in the usual way using the Arrhenius equation:  

 

     k = A  Tm e(-Ea/RT)    
 
Where A is the Arrhenius constant, Ea is the energy of activation, R is the gas constant (0.008315 

kJ/ mole K) and T is temperature in Kelvin; in the model systems, the temperature coefficient, m, 

is zero.  Please distinguish between A the Arrhenius constant and A the reactant and its 

concentration.   The X,Y equations are easily solved to yield: 

 

 
Y t X e Y k k e k k
X t X k k e k k Y e k k

k k t k k t

k k t k k t

( ) [ ( ) ( ( / ) )]/( / )
( ) [ ( / ) ( / ) ( )]/( / )

( ) ( )

( ) ( )

    
    

   

   

0 0 2 1 2 1

0 2 1 2 1 0 2 1

1 1 1
1 1

1 2 1 2

1 2 1 2

 

 
In chemical applications in which temperature is kept constant, k1 and k2 are usually such that X 

and Y very quickly “flatline,” i.e. within seconds they acquire a constant value as it reachs 

equilibrium. Under this assumption, together with the assumption that the concentration of 

chemical A is constant, the A,B,C differential equations may also be solved to yield: 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) (

' ' ' '

' ' ' '

( ) ( ) ( ) ( )

( ) ( ) ( ) (

    

   

   

  

1 2 0 1
1

2
1

1 2 0
1 1

1 2 0
1 1

0 1
1

2
1

4 2 4 1 4 2 4 1

4 1 4 2 4 1 4

    

    

       

       

B t B e e C e e
C t B e e C e e

k t k t k t k t

k t k t k t k  2 ) )t
 

 

in which the constants, 1, 2 are obtained using: 
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k k A X Y k k k A k k4 4 0 0 2 1 5 3 4 1 2
21 2 1 1 8' [( )/( / )] : / ': ( )/                 

 
The above limiting solutions of the reaction equations are found to fit the Kintecus numerical 

solution exactly.  As calculated by the Kintecus program, the solutions correspondingly predict a 

significant increase in the production of C when the temperatures oscillate according to 

T1T2T1T2... 

 

As noted, the temperature profile for the ABC Model cycles between 300K and 480K.  No steady state 

temperature between 300K and 480K predicted more product C than thermal cycling.  Also an 

excessively high temperature of 540K would be needed to generate as much product over the given time 

course as thermal cycling (Fig. 6). In addition, increasing the frequency of thermal cycling had a 

significant effect on increasing the overall rate of production of C.  An examination of the changes in 

concentration of B and C under steady state and thermal cycling at the earliest times showed the 

exponential increase in C and the autocatalytic activity of B.  Figure 7 shows that temperature switching 

increases the concentration of B over steady state temperature levels within the first thermal cycle; at the 

first instance of switching from 300K to 480K, there is a higher concentration of C than at 480K alone 

and this higher concentration of C drives the formation of B to a higher concentration under thermal 

cycling than at 480K alone.  In addition, with thermal cycling the concentration of C begins to increase 

over steady state values after six cycles (not shown).   
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  Figure 6.  ABC Model: Formation of  Product C                     Figure 7.  ABC Model: Predicted                                                      

      at 15,000 sec under Different Steady State              Concentrations of B and C at Earliest Times 
       Temperature Conditions Compared to            at 300K, 480K and with Temperature Cycling 
                 Thermal Cycling (dash line)                                                            
 
         
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Further verification of the behavior of this system under thermal oscillation was sought by 

examining the conditions for this model using the CKS program (not shown).  This stochastically 

based program predicted the same results as generated by the Kintecus program.  

 
The ABCD Model was designed to demonstrate the applicability of thermal cycling in another general 

chemical system in which the target product (D) did not participate in feedback and autocatalysis.  The 

model (Fig. 8) and typical results (Fig. 9) are shown below.  In this model we explored a shorter reaction 

time course (91 minutes) with a rapid temperature cycle.   Product D is formed more rapidly under 

thermal cycling.  The ABCD Model also predicts that, as expected, if [A] is not constant it becomes 

limiting for the formation of D over time (not shown).   
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Figure 8.  ABCD Model:  Input to Kintecus 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 9.  ABCD Model: Predicted Formation of D under Thermal Cycling and Steady State Temperatures 
and Summary Table of Results 

 
Concentrations (Molar) after 5460 sec 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Thermal cycling 300K 480K 
D 8.77 x 10-2 2.20 x 10-3 1.19 x 10-2

B 4.87 x 10-2 9.32 x 10-3 1.61 x 10-2

C 1.70 x 10-2 4.34 x 10-4 1.52 x 10-3

    Initial Concentrations 
 
[A] = 1M (NB: not constant) 
[X] = 1 x 10-3M 
[B] = 1 x 10-4M 
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Conclusions 
 
A hallmark of systems chemistry is the fundamental realization that complex, behavior of even simple 

interacting reactions may not be easily reduced to understanding the activities of the individual 

constituents.  Forced, external cycling conditions may cause interactions within chemical systems 

resulting in non-linear behavior that may be best explored with computational models.  These models and 

their applications are likely to a critical aspect of the future of organic chemistry.  

 

As of now, the vast majority of chemical reactions are conducted under fixed, constant conditions.  

Unlike spontaneous oscillating reactions, the models explored here describe systems carried out under 

thermal cycling conditions.  Studies of thermal cycling include studies by J. Ross in biochemical systems 

found that forced oscillating changes in reactant concentrations created nonlinear behavior (15,16) and by 

R.D. Astumian et al. who demonstrated that cycling conditions can drive chemical systems far from 

equilibrium (17).   Recently, a similar chemical model system was described in which thermal cycling 

accelerated reaction rates (18).    J.M.R. Parrondo and colleagues reported that alternating between to two 

homogeneous systems can give rise to patterns and behaviors reminiscent of games based on Parrondo’s 

paradox (7).    

 

Real applications of thermal cycling in chemical systems are rare.  Thermal cycling has been 

demonstrated to be important in using in enzyme-encapsulated hydrogel beads; changes in temperature 

change the bead volume reversibly bringing external reactant into the bead and forcing product out of the 

bead (20,21).    Two-temperature PCR is a procedure that replicates DNA using thermal cycling (19).   In 

chemical engineering, some microreactors have been designed in which  oxidation of CO under fast 

forced oscillating temperatures has a faster reaction rate than under steady state but this paradoxical 

behavior has not been accompanied by an explanation of the underlying mechanism and extension to 

other chemical engineering systems has not yet materialized.   
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Our models suggest that, under the right conditions, exploring cycling conditions may be valuable in 

synthetic chemistry, bioorganic chemistry and chemical engineering.  For example, thermal cycling may 

be particularly advantageous in template-directed organic chemistry (29) and devising more specific, 

efficient “one-pot” reaction systems with higher yields and better atom economy.   In addition, our 

models suggest applications to breaking chiral symmetry; thermal cycling may be useful in devising new 

synthetic approaches and in developing new concepts related to prebiotic chemistry.  Optimizing the 

variables in our initial models as well as developing new models will aid in understanding underlying 

interactions that will be important for extensions to actual applications.   
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