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Spatial and Temporal Patterns in Macrofaunal Diversity
Components Relative to Sea Floor Landscape Structure
Roman N. Zajac1*, Joseph M. Vozarik2, Brittney R. Gibbons1

1 Department of Biology and Environmental Science, University of New Haven, West Haven, Connecticut, United States of America, 2 Millstone Environmental Laboratory,

Millstone Power Station, Waterford, Connecticut, United States of America

Abstract

We examined temporal changes in macrofaunal a- and b-diversity over several spatial scales (within patches, among
patches, across landscapes and across regions) in Long Island Sound on the northeast USA coast. Regional e-diversity was
estimated at 144 taxa, however c-diversity fluctuated over time as did a- and b-diversity components. Based on additive
partitioning, patch- and region-scale b-diversity components generally had the highest contributions to c-diversity; lower
percentages were found at within-patch and landscape scales. Multiplicative diversity partitioning indicated highest species
turnover at within- and among patch scales. For all partition results, within-patch and patch-scale b-diversity increased
sharply when hypoxia impacted benthic communities. Spatial variation in diversity components can be attributed to the
collection of different patch types at varying spatial scales and their associated habitats across the benthic landscapes, as
well as gradients in depth and other estuarine-scale characteristics. Temporal variation in diversity components across
spatial scales may be related to seasonal changes in habitat heterogeneity, species population dynamics, and seasonal
disturbances. Rare species were significant and temporally consistent components of macrofaunal diversity patterns over
different spatial scales. Our findings agree with other marine and terrestrial studies that show diversity components vary
significantly over different spatial scales and the importance of habitat/landscape heterogeneity in supporting diversity.
However, our results indicate that the relative contributions of scale-specific b-diversity components can also change
significantly over time. Thus, studies of diversity patterns across patches and landscapes based on data collected at one
time, or assembled into a single data set from different times, may not capture the full suite of diversity patterns that occur
over varying spatial scales and any time-specific determinants of those patterns. Many factors that shape and maintain
sedimentary communities vary temporally, and appear to play an important role in determining and maintaining
macrofaunal diversity over different spatial scales.

Citation: Zajac RN, Vozarik JM, Gibbons BR (2013) Spatial and Temporal Patterns in Macrofaunal Diversity Components Relative to Sea Floor Landscape
Structure. PLoS ONE 8(6): e65823. doi:10.1371/journal.pone.0065823

Editor: Philippe Archambault, Université du Québec à Rimouski, Canada
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Introduction

Biological diversity is a central focus of ecological research,

environmental management and conservation. Assessing patterns

of diversity over space and time, and the factors and dynamics that

govern and generate those patterns, is critical for understanding

the ecology of biodiversity and aiding management and conser-

vation efforts. The patterns and dynamics of biodiversity in oceans

and estuaries environments are becoming better known, but many

gaps exist in our understanding [1–3], particularly in sedimentary

systems [4–8], which comprise the most extensive sea floor

environments. There is a relatively long history of diversity studies

in coastal and deep sea sedimentary environments [9], generating

hypotheses on how diversity is generated and maintained [10–12],

discussions of global diversity patterns [13,14] and insights as to

the importance of sedimentary biodiversity to marine ecosystem

functioning [6,15]. Although spatial patterns of soft-sediment

biodiversity have been addressed to varying extent [9], our

knowledge of how different aspects of benthic diversity vary over

sea floor landscapes at varying scales in relation to benthic patch

structure is rudimentary. Advances in sea floor mapping and

related benthic studies [16] now provide the ability to conduct

spatially explicit studies of sea floor biodiversity across different

spatial scales in relation to the structure of benthic landscapes

(hereafter referred to as ‘‘benthoscapes’’), and the processes that

shape benthic biodiversity. Understanding how benthic biodiver-

sity is related to benthoscape structure at different spatial scales,

and how t temporal environmental variations may affect such

relationships, provides a necessary framework to parse the

processes determining the patterns. This study focuses on how

macrofaunal diversity components, a, b and c [17], vary over time

across different spatial scales of benthoscape structure in a large

estuarine system, using both additive and multiplicative approach-

es for partitioning diversity We also assess patterns of species rarity

across benthoscape structure. Biodiversity in estuaries is at high

risk due to impacts from concentrated and growing levels of

human development and activity [1], and acquiring a better
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knowledge of the patterns and dynamics of estuarine biodiversity is

time sensitive as species are potentially being lost and habitats

irreversibly altered in these important global environments [18].

Ecological diversity is comprised of several components: a-

diversity, the diversity within a specific location (sample); b-

diversity, the change or difference in diversity among locations

(samples), c-diversity, the overall diversity across landscapes and e-
diversity, the total diversity of a region [17]. Early studies of

macrofaunal benthic diversity largely focused on contrasting

patterns of a- and c-diversity, but over the past decade there has

been an increased focus on how diversity components, in

particular b-diversity, vary spatially and what factors may be

responsible for the patterns found. Gray [4,19] noted the lack of

studies on b-diversity in sedimentary environments and the

importance of understanding diversity components relative to

threats to marine systems, [18]. Since Gray’s publications on

diversity in marine systems, increasing numbers of studies have

considered patterns of macrobenthic b-diversity in a variety of sea

floor environments. For sedimentary systems, studies have shown

that b-diversity can vary among taxonomic groups and can be

related to changes in varying sets of environmental characteristics

across benthic environments, [20–22], but distance effects appear

to be mixed [22–24]. All of the cited studies and others, e.g. [25–

27], point to the importance of spatial scale in deciphering the

determinants of macrofaunal biodiversity, and how these may

change across spatial scales. Many recent studies have also

underscored what was generally viewed as typical for macro-

benthic communities, and that is the relatively high proportions of

rare species [23,28]. Rare species can make significant contribu-

tions to diversity at all spatial scales, and their population ecology

and role in benthic community dynamics remain effectively

unknown.

Marine benthoscapes, like their terrestrial landscape counter-

parts, are hierarchically structured mosaics of patches that exhibit

both within- and among-patch variation in environmental and

biotic characteristics as well variation along environmental and

structural gradients that occur across the overall structure and

composition of the landscape [29,30]. Josefson [31] used additive

diversity partitioning to assess the relative contributions and

patterns of diversity components in macrobenthic communities in

a set of hierarchically nested samples in the Kattegat/southwestern

Baltic Sea area between Denmark and Sweden. He found that b-

diversity at the regional scale made a larger contribution to overall

diversity than diversity components at smaller spatial scales, likely

driven by changes in species composition due to gradients in

salinity. In contrast, there have been more studies of diversity

partitioning across the spatial hierarchy of landscape structure in

terrestrial, e.g. [32–37], freshwater [38,39] and other types of

marine systems [40–42], providing insights into how a- and b-

diversity vary across spatial scales and how spatial patterns of

diversity vary among different taxonomic and functional groups of

species. Many of these studies point to the importance of

landscape- and region-scale contributions to overall diversity,

and the role of environmental heterogeneity across these spatial

scales in generating the patterns.

Although habitat mapping is providing new tools, types of

information, and interesting approaches for the assessment of

benthic habitats and communities [43–45], there have been no

assessments of how macrofaunal diversity components vary

relative to the hierarchical structure of benthoscape patch

structure that can be revealed through sea floor mapping. Studies

of diversity components in marine sedimentary systems, and in

other environments, do not often provide an explicit landscape

context as landscape components are usually defined by general

patch/habitat types separated over distances that encompass

general types of landscapes and the regions within which they are

located. An explicit landscape context can provide additional

insights into how diversity components change over varying scales

of landscape structure. Furthermore, no assessments of temporal

changes in marine macrofaunal diversity components over varying

spatial scales have been made, and there are few for terrestrial

systems as well [37,46,47]. Within a region, we can expect that a
and b will vary within and among different patches across

landscapes and with time, especially in temperate, seasonal

environments. As such, all species comprising the e-diversity of a

region may not be present at any one time over the sites sampled

and as such c-diversity will vary as well. The objective of our study

addresses how macrofaunal diversity components vary over time

across the hierarchical structure of two benthoscapes in a large

estuarine system along the eastern North American coast. Our null

hypothesis was that macrofaunal scale-specific diversity compo-

nents would show no significant differences in their contribution to

overall diversity, and that there would be no significant variation

in their relative contributions over time. A secondary objective was

to assess temporal variations in species rarity and relationships to

the spatial and temporal trends in diversity components that were

found.

Materials and Methods

Study Areas, Sea Floor Mapping and Sample Collection
Data on benthic species composition and abundances were

collected in two sea floor benthoscapes in Long Island Sound

(LIS), a large estuarine system along the eastern coast of North

America (Fig. 1). The benthoscapes were mapped using side scan

sonar, one , 8 km south of Milford, CT, and the mouth of the

Housatonic River, and the other , 5 km south of the Norwalk

Islands. These are referred to as the Milford and Norwalk

benthoscapes, respectively. Each was ,32 km2 with water depths

ranging from ,12 to 45 m in each area. Side scan surveys were

conducted in November 1993 to develop detailed maps of

benthoscape structure in the study areas. Details of side scan

operations, side scan mosaic development and interpretation and

sediment analyses, as well as high resolution images of the study

areas, are provided in Twichell et al. [48,49]. Based on the side

scan mapping, patches of similar acoustic characteristics were

identified and a series of spatially nested sampling sites were

established in different large-scale patches and along transitions

zones in both shallow and deep-water portions of the two

benthoscapes (Fig. 1). The differing acoustic characteristics of

the large-scale patches were related to different sediment types and

habitat features at varying spatial scales and confirmed through

subsequent studies [48–50]. Briefly, the northern, shallow water

portion of the Milford benthoscape is comprised of a large sand

patch giving way to a sand/muddy sand transitional patch area,

and a large muddy sand patch to the east. In the southern, deeper

water area, sands and muddy sand patches give way to a sandy

mud – mud transitional patch and a large mud patch to the east.

The shallow water, northern portion of the Norwalk benthoscape

is comprised of a coarse sand patch in the west, a sand/muddy-

sand transitional patch in the center of the mosaic area and a

sandy mud/mud patch to the east. The deeper water area is

comprised if a muddy sand/sand muddy sand transitional area, a

mix of mud and gravely sand/boulders patches and a large mud

patch in the most southern portion of the Norwalk benthoscape.

LIS experiences significant seasonal environmental fluctuations,

including varying degrees of hypoxia and anoxia during summer

in its western basins, where the Norwalk benthoscape is located.

Spatial and Temporal Patterns in Biodiversity
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The area of the Milford benthoscape also experiences hypoxia

although not as regularly nor as severely. The maximum period of

recruitment for many benthic, sediment dwelling species generally

occurs during spring and early summer.

Three 200 m6200 m sampling sites were established within

selected patches and transition zones to assess variations in benthic

communities across the benthoscapes. The study areas were

sampled in April, June, August, and October of 1995, and in June,

July, August and October, 1996. Three random, replicate bottom

samples were obtained from each site on each sampling date, for a

total of 864 bottom samples for the entire project. Samples

consisted of a 6 cm diameter615 cm deep core taken from each

grab sample (either a 0.1 m2 or 0.05 m2 Van Veen grab sampler).

The cores were preserved whole in 4% formalin and stained with

Rose Bengal and later washed on a 212:m sieve in the laboratory

and transferred to 70% ethanol. All organisms were sorted using a

dissecting microscope and identified to lowest possible taxon. For

each sampling period, species composition from the three core

samples within each block was combined and abundances

summed to develop the data sets used in the analyses.

Diversity Analyses
To assess contributions to benthic biodiversity at several spatial

scales we employed additive diversity partitioning using Partition

3.0 software [51]. In additive diversity partitioning, c= total

species diversity found in a collection of samples, a= average

diversity within the collection of samples, and b= average diversity

among samples, so that c=a+b, and b= c – a. Across hierarchical

sampling levels, with i = 1,2,3,…. m levels, samples at successive

nested level i+1 are formed by pooling samples in the level below,

i-1. Thus, ai = average diversity found within samples at each level

i, and the diversity components are calculated as bm = c – am at

the highest level and bi = a i+1– a i-1 for each lower sampling level.

The additive partition for diversity is: c~a1z
Pm

i~1

bi. Details on

additive diversity partitioning are provided in [33,52,53]. For this

study, our hierarchical partitioning included local a diversity

(within sampling blocks), and b diversity among locations

(sampling blocks) within patches, b1, among patches, b2, among

different portions of benthoscapes, b3, and among benthoscapes

across the region, b4 (Fig. 2). The partitioning relates to increasing

spatial extent relative to benthoscape structure. Estimates of a
diversity are at the scale of the 2006200 m sampling blocks in

each patch (based on the summed values of three samples cores as

noted above). Estimates of b diversity the among-patch scale, b2,

represent larger spatial scales than estimates for locations within

patches, b1. b diversity estimates among portions of benthosca-

pes,b3, e,g, the northern and southern areas of the Milford and

Norwalk benthoscapes, represent larger spatial scales than patches,

and the regional scales comparing the two benthoscapes, b4

represents the largest spatial scale. The b components represent

increasing spatial scales of benthoscape structure, but since

sampling blocks were not equidistant within specific patches, nor

the patches themselves, each spatial scale of the hierarchical

partitioning represent a range of actual distances; ,400 m–1 km

for b1, ,800 m –2.4 km for b2, ,4–5 km for b3, and ,20 km for

b4.

To assess seasonal and year to year changes in diversity

components, partitioning was conducted for each sampling period

separately. Both weighted (total of number of individuals in a

sample as a proportion of the total number of individuals in the

data set) and unweighted data were used to partition observed and

expected taxonomic richness. The observed diversity components

were tested for deviation from randomness based on 999 iterations

using individual based randomization to calculate p-values.

Diversity component values from each sampling period were

grouped to assess differences in average contributions to total

diversity across the study period using analysis of variance

(ANOVA) or non-parametric Kruskal-Wallis tests. We also

calculated multiplicative diversity components of species richness

and multiplicative partitions using a range of q-metric diversities

[54] to assess the sensitivity of temporal changes in b-diversity

components to differences in the diversity partitioning approach

used, as well as the influence of rare, q = 0.5, and more abundant

species, q = 1.5, on changes in b-diversity across spatial scales; we

also used q = 0.999 which yields the common Shannon diversity

measure.

Additional analyses were conducted using EstimateS 8.0

software [55] to determine temporal changes in species rarity,

including the calculation of singletons (species with only one

individual in the pooled samples), doubletons (species with only

two individuals in the pooled samples), uniques (species that occur

in a only one sample among the samples), duplicates (species that

occur in a only two samples among the samples), and the mean

number of shared species among sample blocks for each sampling

period.

Results

General Community Characteristics
A total of 144 benthic taxa were found (from a total sample of

.10,000 individuals), providing an estimate of the overall e-
diversity of the region over the two year study period. The species

pool was dominated by polychaete annelids (75 taxa), molluscs (27

taxa) and crustaceans (23 taxa), with 19 taxa in other groups.

Numerically dominant species included the polychaetes Mediomas-

tus ambiseta, Ampharete americana, Nephtys incisa, Scalibregma inflatum

and Cossura longocirrata, an unidentified oligochaete species and the

bivalves Nucula proxima, Mulinia lateralis and Yoldia limatula. Details

of community composition and dynamics are given in [50].

Diversity Partitioning
The time-specific c-diversity in each sampling month fell below

the estimated e-diversity for the entire study period, and diversity

components based on additive partitioning across different scales

of benthoscape structure varied considerably among sampling

dates (Fig. 3). Based on sample weighted data, mean local a-

diversity was relatively consistent accounting for 19.9–28.9% of

total species richness throughout the study period. These levels

were all significantly less (p,0.05) than expected from random.

The relative contributions to c-diversity of b-diversity components

b1, among locations within patches, b2, among patches, and b3,

among different portions of benthoscapes, varied considerably

over the study period, with no apparent seasonal pattern. b1

contributions ranged between 9.8% and 21.2% and were either

not significantly different (p.0.05) than expected or significantly

less than expected from random. Changes in diversity among

patches, b2, were not significantly different from random at two

sampling periods and otherwise were greater than expected from

random, accounting for 17.8% –32.8% of total species richness.

Contributions to total species richness among different portions of

benthoscapes, b3, ranged from 8.7% to 22.7% and were all greater

than expected from random. At the regional level, contributions

among benthoscapes, b4, were relatively consistent over time,

ranging from 19.6% to 25.4%, except in August 1996 when it fell

to 5.5% (see Discussion). All the b4 contributions were significantly

greater than expected. The mean contributions of diversity

components to total species richness over time (Fig. 4) were

Spatial and Temporal Patterns in Biodiversity
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significantly different among the spatial scales considered (one way

ANOVA, F4,35 = 7.69, p,0.001). The highest mean contributions

were at the local, a, among patch, b2 and among benthoscapes,

b4, scales, with significantly lower mean contributions at the

within-patch, b1, and within benthoscapes, b3, scales. Regression

analyses indicated no relationships between diversity components

and total species richness (R2 varied from 0.0 to 0.047, and all

slopes were non-significant, with p-values ranging from 0.605 to

1.0).

Diversity partitioning using unweighted data resulted in less

variable diversity components over time and somewhat different

relative contributions to species richness (Fig. 3). Local mean a-

diversity comprised 14% to 20% of species richness over the study

period, somewhat less than that found using weighted partitioning.

All the observed a values were significantly less than predicted.

Contributions of b1 diversity, among sites within patches, ranged

from 10 to 14%, except in August 1996 when it was 23%, and

were all significantly greater than expected. Diversity components

at the patch, b2, benthoscape, b3, and regional, b4, levels made

similar contributions to species richness, ranging from 18–28%

except in August 1996 when the contribution of b2 was 37.6%,

and b3 and b4 accounted for 14.2% and 4.8% of species richness,

Figure 1. Location and benthoscape patch structure of the two study areas in Long Island Sound, USA. The approximate geographic
centers of the study sites are at 41.091772uN, 73.01239uW, and 41.027571uN, 73.282928uW for the Milford and Norwalk sites, respectively. The blue
boxes are locations of sampling blocks in different patches.
doi:10.1371/journal.pone.0065823.g001

Spatial and Temporal Patterns in Biodiversity
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respectively. In contrast to abundance weighted partitions,

observed b2 unweighted values were mixed with respect to null

models; significantly less than predicted in April and July 1995, not

significantly different from expected between August 1995 and

July 1996, and either greater than or marginally greater than

(0.05.p,0.10) predicted in August and October 1996. All

diversity components at larger spatial scales, b3 and b4, were

significantly greater than expected. The relative contributions of

unweighted diversity components to total species richness (Fig. 4)

were significantly different when pooled over the study period

(Kruskal-Wallis test, H = 19.54, p,0.001). Patch, b2, benthoscape,

b3, and region-level, b4, components were not significantly

different from each other, but all higher than within-patch, b1,

diversity. Local and within-patch diversity components were not

significantly different, and contributions of local a diversity were

not different from that found at the patch and region scale.

Patterns of temporal change in multiplicative b components

varied over the study period and differed depending on which

partitioning approach was employed and the specific b-diversity

component considered (Fig. 5). Overall, all q-metric b-diversity

components declined with increasing values of q, reflecting the

lower emphasis given to rare species as q inreases. However,

changes in turnover diversity at each spatial scale over the study

period differed among the b components. Beta diversity among

locations within patches, b1, varied in a similar pattern for all

turnover values calculated, fluctuating between April 1995 and

July 1996, and then showing a sharp increase in August 1996. The

patterns of b-diversity among patches, b2, and among different

sections of benthoscapes, b3, were more variable over time relative

to the partitioning approach employed and the value of q,

although all q-metric values for b2 increased sharply in August

1996 as well. Beta diversity among benthoscapes, b4, was generally

lower than the other b components, similar among the different q-

metrics, and exhibited relatively little variation over time, except

for an increase in q-metric b4s in August 1996. This is in contrast

to the weighted and unweighted values calculated for species

richness which declined at that time. Interestingly, multiplicative

b-values for the within-patch scale were similar to the patch scale

and higher than for landscape and regional scales, in contrast to

lower within-patch scale b1 values relative to larger spatial scales

calculated using additive partitioning of species richness. Ran-

domization tests indicated that most multiplicative b-diversity

components were higher than expected for most sampling dates

(Table 1). However, b1 values were either lower than expected or

not significantly different for all q-metric diversity partitions,

except in August 1996, and randomization test results were mixed

for q = 0.999 and q = 1.5 partitions for most 1996 samples. Testing

of general differences among multiplicative b components over the

study period, by grouping values for specific b components from

each sampling time and applying a Kruskal-Wallis tests, indicated

that there were significant differences in species turnover for the

weighted (H = 22.583, p,0.001) and unweighted (H = 24.44,

p,0.001) species richness partitions, with b1, within-patch, and

b2, patch, contributions significantly greater (p,0.05, Dunn’s post

hoc z-test) than landscape and regional scales. For the q-diversity

components, there were significant differences for q = 0.05

(H = 20.01, p = 0.002) and q = 0.999 (H = 9.707, p = 0.021), but

the median b contributions among spatial scales were not

significantly different (H = 5.757, p = 0.123). For q = 0.05 and

q = 0.999, within patch and patch level bs were significant higher

than for landscape and regional scales (p,0.05, Dunn’s post hoc z-

test).

Rarity
The mean number of shared species among any two locations

was generally ,10 and tracked fluctuations in overall species

richness (Fig. 6). The highest numbers of shared species ranged

between , 19 and 25, and there were sampling sites that shared

no species on all sampling dates except in April 1995. Several

measures of species rarity were calculated for the data set (Fig. 6).

The highest numbers of singletons and doubletons (species with

only one or two individuals in the pooled samples, respectively)

were found in April and July 1995 when species richness was

highest and then remained fairly constant over the rest of the study

period. The number of uniques (species that occurred at only one

site in the pooled samples) was highest in April 1995, and then

varied between , 15 and 25 species during the rest of the study

period. The number of duplicates (species that occurred at only

two sites in the pooled samples) varied between ,8 and 15 species

over the course of the study. 35.4% of the taxa comprising the e-
diversity of the region were found during only one sampling

period, and 14.5% were found at two sampling times (Table 2).

Only 32 species were found on every sampling date (22.2% of the

total number of taxa found). Of the 51 species only found on one

sampling date, most were polychaete annelids, followed by

gastropods and crustaceans. In terms of life mode/functional

attributes, these taxa were predominantly associated with the

sediment/water interface, with fewer taxa having a burrowing life

mode (Table 2).

Discussion

The diversity components associated with the macrofaunal

communities studied in Long Island Sound varied significantly

Figure 2. Hierarchical, additive partitioning scheme indicating
the spatial scales at which b-diversity components were
calculated. Total diversity at a specific sampling time, c, is calculated
as c= a1 (within sampling blocks)+b1 (among locations/sampling blocks
within patches)+b2 (among patches)+b3 (among locations with
benthoscapes)+b4 (among benthoscapes ). The same hierarchical
structure was use for multiplicative partitioning, but in this case
c=a16b16b26b36b4.
doi:10.1371/journal.pone.0065823.g002

Spatial and Temporal Patterns in Biodiversity
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across different spatial scales of seafloor benthoscape structure.

Also, their relative contributions to c-diversity fluctuated over

time, with some components exhibiting greater degrees of

temporal variation than others. Based on additive species richness

partitioning, local a-diversity (i.e. within the 2006200 sampling

blocks) tended to be relatively less variable than the b components,

and comprised only about ,18–25% of total species richness. On

an overall basis, spatial scales above the local habitat accounted for

the greatest proportion, ,75%, of species richness across the

benthoscapes,. The percent contribution of within-patch b1

diversity was generally low but variable, and the contribution at

the largest spatial scale, b4, among benthic landscapes, was similar

throughout the study. However, there were larges shifts in b1 and

b4 in August and October 1996 (see below). The greatest degree of

variation was at the among-patches, b2 and among-portions of

benthoscapes, b3, scales for all the diversity partitioning calculation

methods employed. Multiplicative b components, including q-

metric diversities, exhibited similar degrees of variability in their

spatial and temporal patterns, but the relative contributions to

overall diversity differed as within-patch scales, b1, accounted for

higher species turnover relative to b components at larger spatial

scales, in contrast to the smaller relative b1 contributions among

spatial scales indicated by additive partitioning of species richness.

The differences between the additive and the q-metric diversities

reflect the effects of widespread dominant species and the different

units each metric expresses (numbers of species versus species

Figure 3. Results of weighted and unweighted additive partitions of species richness across two benthoscapes in Long Island
Sound. Randomization test results are given to the right of the figures. ‘‘. ’’ indicates significantly (p,0.05) larger contributions than expected from
random to the diversity component at that scale, ‘‘, expected indicates significantly smaller contribution; NS indicated not significantly different
(p.0.10) from random, m indicates marginally significant (0.05.p,0.10).
doi:10.1371/journal.pone.0065823.g003
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equivalents). Although multiplicative b1 components indicated

large contributions to c-diversity, randomization tests often

indicated that these were significantly smaller than expected,

similar to that found for additive b1 components.

Despite some differences in the relative patterns and contribu-

tions of the diversity components, on overall basis, certain trends

emerge that were generally robust to the partitioning methods

employed. Chief among these are the significant contributions b-

diversity components make to c-diversity, and that scale–specific

b-diversity components can exhibit significant temporal fluctua-

tions, indicating shifts in the relative contributions/importance of

the factors associated with different scales of benthoscape

hierarchies. These include both environmental factors and

ecological characteristics and dynamics that play out across

different spatial and temporal scales. The significant increases in

b-diversity at larger spatial scales associated with patch and

benthoscapes in this study agree with findings of similar trends in

other marine and terrestrial environments. For example, Josefson

[31] found larger than expected contributions (.65%) to c-

diversity of benthic macrofauna among regions. Similar to our

findings for a-diversities and b1 among locations within a specific

patch, Josefson [31] also found that a-diversity (within samples)

and his b1 diversity among samples, were lower than expected.

Greater than expected contributions to total diversity at large

spatial scales have been found, for example, in coral reef

landscapes, for both corals [40,42] and coral dwelling fish [40],

forest insect communities [34,36], plants in agricultural landscapes

[35], macroinvertebrates and fish of lakes and streams [38,56] and

desert mammals [57].

The b-diversity patterns we found point to the importance of

benthoscape structure and the associated variation in habitat

heterogeneity over different spatial scales and times in shaping the

diversity of sedimentary macrofaunal communities. The study

areas in Long Island Sound are comprised of large-scale patches of

varying sediment type that have small- to meso-scale sedimentary

habitat features such as pits, mounds, sandwaves, shell accumu-

lations, and tube mats, that vary both within and among the large-

scale patches [50]. Across the two benthoscapes there are also

smaller-scale gradients in depth among patches and within

patches, and a benthoscape-wide depth gradient from shallow

(, 5–15 m) to deep (15–35 m) waters. The contributions of b-

diversity components to overall diversity relative to this structure

indicate that habitat heterogeneity is an important and temporally

consistent determinant of this diversity. Considering additive b
components, the smallest contribution, ,14% on average, was

found for different locations within specific patches (b1), which is

not surprising since it is expected that although within-patch

habitat features are likely to vary over the extent of a patch, there

will be some overall similarity of habitat features relative to other

patch types. A spectrum of sedimentary environments comprised

the large-scale patches of the LIS benthoscapes, varying from

patches of boulders, gravel, and sand to clayey-silty muds (Fig. 1),

constituting highly heterogeneous benthoscape elements. Similar

sedimentary environments were found in both shallow and deep

waters, but depth also adds to overall habitat heterogeneity. The

b-diversity components at the patch, b3 and landscape, b4, scales,

accounted for ,40 to 50% (weighted and unweighted additive

partitioning, respectively) of total species richness in the region.

This likely is related to species accumulating across the different

patches of the benthoscapes, and the habitats they provide, as well

as responses to depth related habitat characteristics. Regional

differences among the two benthoscapes accounted for approxi-

mately 22% of species richness, except in August 1996. There are

differences in the overall benthoscape structure of the two study

areas (Fig. 1), as well as estuarine-scale gradients in environmental

and ecological characteristics from the central to the western

basins of LIS [58–60], where the Milford and Norwalk sites were

located, respectively. These differences generate additional habitat

differences and niches across the region, allowing for additional

species to accumulate at this scale. Collectively, the results from

this and the other studies noted above underscore the importance

of landscape heterogeneity as a determinant of the ecology of

biodiversity in many different types of environments.

Whilst habitat heterogeneity at different spatial scales may have

important positive effects on diversity, disturbances can have

significant negative effects on sedimentary communities and

biodiversity [61,62], and for some types of disturbances through

impacts that reduce habitat heterogeneity [63,64] All the partition

results in this study indicate a sharp shift in the relative

contributions of b components in August 1996, which is likely

Figure 4. Differences in the mean (+95% confidence interval)
temporal contribution of diversity components to species
richness in Long Island Sound. Spatial scale associated with each
diversity component is given in Fig. 2. Although the mean values are
presented for the unweighted partition, a Kruskal-Wallis test was used
to test for differences in medians. Lowercase letters show results of
post-hoc tests, diversity components sharing the same letters were not
significantly different (p,0.05).
doi:10.1371/journal.pone.0065823.g004
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related to the responses of macrofaunal communities to hypoxia/

anoxia events. The western portion of LIS, where the Norwalk site

was located, is characterized by seasonal hypoxia/anoxia, the

extent and severity of which varies from year to year (see: http://

www.ct.gov/dep/cwp/view.asp?a = 2719&q = 325532&depNav_

GID = 1654 Accessed 2013, January 29). The spatial distribution

of low oxygen conditions during periods of hypoxia/anoxia in

these portions of LIS is highly variable as well. The Milford site is

outside the zone that is generally susceptible to hypoxia/anoxia

in the late summer. In mid to late August 1996 there was a

significant hypoxia event in the region of Norwalk site, with

bottom water dissolved oxygen (DO) levels ranging between 1–

2 mgL21. Portions of the Milford site experienced DO levels of

3–3.5 mgL21 at this time. Macrofaunal communities were

greatly reduced in abundance and species number at this time

and spatially fragmented in terms of remnant communities and

species populations [50,65]. Within-patch, b1, and patch, b2,

diversity components accounted for a greater degree of overall

diversity with reductions at the landscape and regional scale. It

appears that patches and portions of patches are differentially

affected by low DO and this community fragmentation leads to

smaller-scale pockets of different species among locations within-

patches and among patches across the benthoscapes. Species

richness was reduced across both study areas, accounting for

reductions in benthoscape, b3, and region-level, b4, diversity

components. This suggests that large-scale disturbances, such as

hypoxia in this case, can alter the spatial patterns of b-diversity

across sea floor benthoscapes by reducing diversity across the

extent of the hypoxic zone and increasing community heteroge-

neity at smaller spatial scales.

Another important aspect of the spatial and temporal patterns

of macrofaunal benthic diversity presented here is the fluctuation

in c-diversity that occurred through the study period. The overall

number of taxa found in this study was 144, which can be

considered as an estimate of e diversity [17], the overall diversity of

a large region comprised of varied landscapes. However, c-

diversity was consistently lower than e-diversity, ranging from 108

to 42 taxa. The low c-diversity found in August and October 1996

can be attributed to the hypoxic event discussed above. The

highest c-diversity was found in April and June 1995, and then

remained fairly constant through the middle portion of the study

between August 1995 and July 1996. The fluctuations in c-

diversity prior to the August 1996 likely reflect variation in

seasonal recruitment across LIS among years, particularly in

spring/early summer, and subsequent declines in species richness

during summer, fall and winter, which is common in large

temperate estuarine systems such as LIS. When environmental

conditions allow for strong recruitment years, it is likely that a

Figure 5. Temporal fluctuations in b turnover diversity at different spatial scales in Long Island Sound, based on multiplicative
partitioning. Spatial scales associated with each b-diversity component are given in Fig. 2. Weighted and unweighted refer to species richness.
doi:10.1371/journal.pone.0065823.g005
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greater proportion of species comprising e-diversity will have

higher population abundances, mostly in spring and early

summer, and be spread across a broader region, and thus more

likely to be sampled.

In our study, c-diversity ranged from 36 to 86 taxa less than the

estimated e-diversity for the region, not counting the sampling

periods affected by anoxia in 1996. This difference underscores the

contribution of rare species to overall macrofaunal diversity

patterns. A large proportion of the taxa collected fell into several

categories of rarity. The mean number of shared species among all

sampling sites was low, ,10 taxa, and ranged from 1–28 taxa

across the study period. The highest numbers of shared species

occurred during spring/early summer recruitment periods, and

generally tracked fluctuations in c-diversity. Consequently,

macrobenthic diversity patterns were greatly shaped by spatially

and temporally variable occurrences (and disappearances) of the

majority of the taxa comprising e-diversity. Half the taxa were

found only once or twice, but the number of uniques, singletons,

doubletons and duplicates did not vary greatly among sampling

dates, except for the number of uniques at the April 1995 sampling

date. Many of the rarest species (found only once during the study)

were polychaetes, gastropods and crustaceans that live at

sediment/water interface or in the upper few cm of the sediments,

Table 1. Results of significance tests of multiplicative b-
diversity components from partitioning analyses using
individual-based randomizations.

Weighted Unweighted q = 0.5 q = 0.999 q = 1.5

Apr 95 b1 + NS + + +

Apr 95 b2 + + + + +

Apr 95 b3 + + + + +

Apr 95 b4 + + + + +

June 95 b1 + NS 2 2 2

June 95 b2 + + + 2 +

June 95 b3 + + + + +

June 95 b4 + + + + +

Aug 95 b1 + 2 2 2 2

Aug 95 b2 + + + + +

Aug 95 b3 + + + + +

Aug 95 b4 + + + + +

Oct 95 b1 + 2 2 NS M+

Oct 95 b2 + + + + +

Oct 95 b3 + + NS 2 NS

Oct 95 b4 + + + + +

June 96 b1 + 2 2 2 2

June 96 b2 + + + + +

June 96 b3 + + + + M+

June 96 b4 + + + + +

July 96 b1 + + NS NS NS

July 96 b2 + + + + +

July 96 b3 + + + NS 2

July 96 b4 + + NS 2 2

Aug 96 b1 + + + + +

Aug 96 b2 + + + + +

Aug 96 b3 + + + + +

Aug 96 b4 + + + + +

Oct 96 b1 + M+ NS NS NS

Oct 96 b2 + + + NS NS

Oct 96 b3 + M+ M+ NS NS

Oct 96 b4 + + + NS +

+ = significantly (p,0.05) larger than expected from null model,
2 = significantly smaller than expected, M = marginally significant
(0.05.p,0.10).
doi:10.1371/journal.pone.0065823.t001

Figure 6. Temporal fluctuations in the mean number of shared
taxa (upper) and the number of taxa in several different
categories of rarity (lower) in Long Island Sound. Rarity
categories are defined in text. The upper graph also shows the
fluctuation in the total number of taxa found at each sampling time.
doi:10.1371/journal.pone.0065823.g006

Table 2. Frequency of rarity of Long Island Sound
macrofauna during the 1995–1996 study period, and the
taxonomic and functional characteristics of taxa that were not
found seven of the eight sampling periods.

Number of times not found: 1 2 3 4 5 6 7

Number of taxa: 4 9 9 8 10 21 51

Polychaetes: 28 Sed/W Interface: 37

Gastropods: 7 Burrowing: 14

Amphipods: 4

Other Crustaceans: 4

Cnidaria: 3

Bivalves: 3

Echinoderms: 1

Sed/W = Sediment/Water.
doi:10.1371/journal.pone.0065823.t002
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such as amphipod crustaceans, and ampharetid, cirratulid and

syllid polychaetes. Deeper living, generally burrowing, species may

have been undersampled, so there may be some bias in the

distribution of life modes among these rare species. Despite this

potential bias, the data suggest that macrofauna that occupy

habitats associated with top layers of the sediments may be the

most likely to vary in their spatial and temporal distribution and,

as such, constitute the majority of rare taxa in soft sediment

benthoscapes. They may also be most sensitive to variations in

habitat heterogeneity associated with the sediment-water interface

and differences in these habitat components at the patch and

larger spatial scales. Studies have indicated that macrobenthic b-

diversity may be positively related to small-scale variations in

biogenic habitat heterogeneity [63] and significant variations in b-

diversity across benthoscapes may primarily involve taxa that have

life modes and life histories that are closely dependent on

conditions at the sediment/water interface. The most common

taxa found in the study areas, and most widely distributed [50], are

mostly either burrowing deposit feeders/omnivores (Nephtys incisa,

Scalibregma inflatum, Cossura longocirrata), or are sedentary or

discretely motile but live several cm deep in the sediments (Nucula

proxima, Yoldia limatula), suggesting that species with these types of

life modes are more likely to comprise the majority of shared

species in subtidal sedimentary environments such as sampled in

this study. It is not known to what extent the rare species found in

the benthoscapes we studied are more abundant in other areas of

LIS, and this points to the need for spatially extensive surveys over

several time periods to obtain an accurate assessment of

commonness and rarity. Assessments of system-wide surveys in

LIS conducted previous to this study reveal significant spatial

variations in macrobenthic community structure across this

estuary [66] beyond the largest scale included in our analyses.

How patterns of taxonomic rarity and commonness change over

such system-wide scales, and how they are related to patterns of

diversity, remain a little understood aspect of macrobenthic

ecology.

In conclusion, our findings agree with other studies of marine

and terrestrial communities that have shown diversity components

to vary significantly over different spatial scales and the

importance of habitat/landscape heterogeneity at multiple spatial

scales in supporting regional diversity. However, our results

indicate that the relative contributions of scale specific b-diversity

components can also change significantly over time. Thus, studies

of diversity patterns across patches and landscapes that are based

on data collected at one time, or assembled into a single data set

over a short period or from disparate times, may not capture the

full suite of diversity patterns that occur over varying spatial scales

and any time-specific determinants of those patterns. Many factors

that shape and maintain sedimentary macrofaunal communities

vary temporally, and appear to play an important role in

determining and maintaining macrofaunal diversity over different

spatial scales.
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