

13.4. AUTOMATIC THEOREM PROVING 373

Exhibit 13.8. Ways to write a Horn clause.

We show that a Horn clause can be rewritten as an implication whose premise is a series of predicates
connected by “and” operators and whose conclusion is a single predicate. Let each capital letter in
the following derivation stand for a predicate symbol with its required arguments.

A Horn clause is a clause with at most one nonnegated predicate, such as:

not P or not Q or not R or S or not T

Because “or” is associative and commutative, we can move all the negated predicates to the right:

S or not P or not Q or not R or not T

Using DeMorgan’s law, this expression can be transformed to the form:

S or not(P and Q and R and T)

The operator “implies” is defined in terms of “not” and “or”, and can be written with either a
right-pointing arrow or a left-pointing arrow. Thus the two expressions

B ← A A→ B

are defined to mean
B or not A

We use the left-pointing “implies” arrow here to conform to the order of terms in Prolog syntax.
Now we can rewrite the Horn clause as follows:

S ← (P and Q and R and T)

we can infer D, where all variables in D have been instantiated with expressions that unify the set
{{A1,B1}, {A2,B2},. . . ,{An,Bn}}.

The unification algorithm finds a set of substitutions for the variables in the two formulas so
that, after making the substitutions, the two clauses are equal. This is a kind of pattern-matching
process. Exhibit 13.9 shows examples of simple unification problems and their results.

We use the unification algorithm to determine whether or not a conditional Horn clause, C,
can be used in a resolution, given the current set of unconditional clauses in the data base. To
perform a hyperresolution step, we need to find a set of unconditional clauses that cover all the
predicate symbols in C, and a single set of instantiations for all the variables in these clauses that
unifies each unconditional clause with the corresponding predicate. Let us describe the process of
unifying an unconditional clause whose predicate symbol is P , and a single predicate symbol, Q,

374 CHAPTER 13. LOGIC PROGRAMMING

Exhibit 13.9. Unifying clauses.

Formula 1 Formula 2 Most General Unification

1. pp(a,b) pp(X,Y) X=a, Y=b
2. pp(Q(c,d),Z) pp(Y,e) Y=Q(c,d), Z=e
3. pp(X,Y) and qq(Y,a) pp(a,b) and qq(Z,W) W=a, X=a, Y=b, Z=b
4. qq(pp, gg(X,Y), X, Y) qq(Y, Z, hh(U, kk), U) U=pp, X=hh(pp,kk)

Y=pp, Z= gg(hh(pp,kk), pp)

in the conditional clause C as follows:

• A cluster is a set of terms that have been mapped into one equivalence class and must be
unified.

• To begin the unification process, map P and Q into a cluster.

1. Choose any cluster. Look at all the terms in the cluster. (In unifying M items, there
will be M terms.)

2. If one term is a constant and if another term is a predicate or a constant that does
not match, no unification is possible and the process fails. If all terms are matching
constants, this branch is successfully unified. Otherwise proceed.

3. If two or more terms are predicates and they are different, no unification is possible and
the process fails. Otherwise, proceed, and let N be the arity of the cluster.

4. We know we are merging a combination of one constant or one predicate with one or more
variables. Merge all terms in the cluster into a single unified super-term. Temporarily,
the super-term will inherit all the arguments from the predicate terms in the cluster, so
that it will have M first arguments, M second arguments, ..., and M Nth arguments.

5. We must replace each collection of M Nth arguments that was created in step 4 by a
unified term. For j from 1 to N , look at all the Nth arguments that belong to this super-
term. (If we are unifying M terms, there will be M arguments to consider.) Make a new
cluster by mapping together all the terms that are the jth arguments of the super-term.
During this process, we may find that one of the terms to be mapped was mapped to a
different cluster by a previous operation. In that case, the two clusters are mapped into
one.

6. Replace the cluster we have been processing by the super-term created in step 4 with
its arguments replaced by the argument clusters from step 5.

7. Repeat steps 1 through 6 until there are no remaining clusters in the formula.

• The process will end when it has descended through all levels of argument nesting.

13.5. PROLOG 375

13.5 Prolog

13.5.1 The Prolog Environment

Prolog is an interactive language for expressing predicates, relations, and axioms. The programmer
may state facts or make queries about those facts. In response to a query, Prolog will attempt to
find one instantiation of the query’s variables that makes the formula true.

In addition to the language for writing logical assertions and queries, a Prolog system includes
a metalanguage for managing the data base of facts and rules. Large data bases can be entered
either from a file or from the keyboard by calling the input function consult(filename). Once in
the system, parts of the data base can be listed (by using listing(predicate_name)) or edited
(by using retract(Z)), and the data base can be extended (by using asserta(X) or assertz(X)).

After entering a data base, the programmer may interactively enter queries, test hypotheses,
and assert more facts. In response to a query, Prolog executes its proof-procedure and searches for
a set of instantiations that satisfies a query’s variables. If this search succeeds, Prolog responds
by writing out the instantiations that were found. The programmer can indicate that she or he
is satisfied (by typing a carriage return), and Prolog responds by saying “yes” and giving a new
prompt. Alternatively, the programmer may ask Prolog to search for additional instantiations (by
typing a “;” and a carriage return). This search process continues until the programmer decides she
or he has seen enough or the entire data base has been searched and no further set of instantiations
can be found, at which time Prolog responds by writing “no” and a new prompt.

13.5.2 Data Objects and Terms

The basic components of a Prolog program are objects (constants, variables, structures, lists),
predicates, operators, functions, and rules.

• Constants: Integers are predefined and represented in base 10. User-defined constants, or
atoms, have names that start with lowercase letters. Remember that a Prolog program, like
a theory, may have many models (or none) and a Prolog atom may correspond to different
objects in different models.

• Variables: All variable names start with uppercase letters. All occurrences of the same
variable in a rule will be bound to the same object. The symbol “_” can be used in place of
a variable name in cases where the program does not need to refer to this same object twice.
If the “_” symbol occurs several times in a rule, it may be bound to several different objects.

• Structures: Compound data types (record types) may be defined by specifying a functor (the
type name) and a list of components (fields), in parentheses:

〈type name〉(〈component〉, . . . , 〈component〉)

• Lists may be denoted by using square brackets. The empty brackets “[]” denote the empty
(null) list. The notation [a,b,c] denotes a list of three terms whose head is a and whose

376 CHAPTER 13. LOGIC PROGRAMMING

last item is c. The notation [A|X] denotes a list of length one or greater with head A and
tail, or remainder, X, which may be a list, a single atom, or null. This notation is often used
in function definitions to give local names (A and X) to the parts of a list.

This bracket notation is a “sugaring” of a less attractive basic syntax; “[Head|Tail]” is a
syntactic variant of “.(Head,Tail)” and “[x,y,z]” is a variant of “.(x, .(y, .(z, [])))”.
We will call both forms list specifications. A list specification can denote a fully defined list,
such as [a, b, c], a fully variable list, such as [Head|Tail], or a list with a defined head
and a variable tail, such as [a,b|Z]. The term open list refers to a list with a variable tail.
During the proof process, an open list may be unified (matched) with any list that has the
same constant as its head. The selector functions head(x) and tail(x) are defined to return
the head and tail of a list argument.

• Predicates =, \=, <, =<, >, and =>are defined. Users may introduce their own predicate
symbols, which are written in lowercase. Again, remember that the semantics of these symbols
remains largely in the programmer’s mind. Within Prolog they have no meaning except that
captured by the axioms, or rules, the programmer supplies.

• The integer operators +, -, *, /, and mod are defined and may be written either in standard
functional notation: “+(3,X)”, or in infix form: “3+X”. When infix form is used, the operators
have the usual precedence. These operators may be used in an “is” formula, thus: “X is

(A+B) mod C”. When Prolog processes such a formula it performs the computation using
the current bindings of A, B, and C, and binds the result to X. An error is generated if any
variable on the right of the “is” is not bound to a number.

A term is a predicate symbol or operator or function symbol, together with a parenthesized list
of the right number of arguments.

13.5.3 Horn Clauses in Prolog

Deductive Rules

Rules are the axioms that form the basis for deductions in Prolog. A rule represents a statement
of the form

If a set of premises are all true,

then we may infer that a given conclusion is also true.

The conclusion is written on the left, followed by a “:-” sign, and the premises are written on the
right, separated by commas. The variables in a rule are implicitly, universally quantified. A rule is
also called a conditional clause. Examples of rules are given in Exhibit 13.10.

A fact is an assertion that some object or objects satisfy a given predicate. Formally, a fact is a
rule which has a conclusion but no conditions, and it is, therefore, sometimes called an unconditional

clause. Examples of facts are given in Exhibit 13.10. The programmer adds a new fact to the data

13.5. PROLOG 377

Exhibit 13.10. Prolog rules and facts.

Conditional clauses pretty(X) :- artwork(X).

(rules) pretty(X) :- color(X,red), flower(X).

watchout(X) :- sharp(X,_).

Unconditional clauses color(rose, red).

(facts) sharp(rose, stem).

sharp(holly, leaf).

flower(rose).

flower(violet).

artwork(painting(Monet, haystack_at_Giverny)).

base by asserting it. If X is a fact, then the predicate asserta(X) appends the fact X to the
beginning of the data base, and the predicate assertz(X) appends it to the end.

Prolog rules and facts are Horn clauses. The conditions of a rule are a conjunction of terms,
even though we write commas between the terms rather than “and” operators. Each single rule
represents the “and” of a series of conditions. The conclusion is a single positive term, and the
“:-” represents a← sign. An underscore is a wild card. Thus a Prolog rule is a Horn clause written
in the form shown on the last line of Exhibit 13.8. Prolog facts are unconditional Horn clauses.

Typically, one predicate may have several rules defined for it [Exhibit 13.13]. A list of rules
for one predicate represents the “or” of those conditions—only one rule will be used to interpret a
given call on that predicate, and the one used will be the first one that can be satisfied. Thus we
can use a sequence of rules to express a generalized conditional semantic structure.

Rules may be recursive and thus may be used to implement repetition in an algorithm. A
recursive predicate must, of course, have at least two rules (the base case and the recursive step).

Exhibit 13.11. Prolog queries.

?- pretty(rose).

yes

?- pretty(Y).

Y=painting(Monet, haystack_at_Giverny).

Y=rose

no

?- pretty(W),sharp(W,Z).

W=rose Z=stem

no

378 CHAPTER 13. LOGIC PROGRAMMING

Exhibit 13.12. Interpreting Prolog rules.

Rules 2 and 3 from the gcd algorithm [Exhibit 13.13] are dissected here. In both rules, A and B are
input parameters and D is an output parameter.

gcd(A, B, D) :- (A<B), gcd(B, A, D).

This right side is the analog of a Pascal IF...THEN statement. Prolog interprets it as follows: test
whether (A<B) is true. If so, call predicate gcd with arguments (B, A, D). If that succeeds, D will
be bound to the answer.

gcd(A, B, D) := (A>B), (B>0), R is A mod B, gcd(B, R, D).

This performs the equivalent of two Pascal if statements, an assignment, and a function call. Prolog
interprets it thus: test whether (A>B) is true. If so, test (B>0). If both conditions hold, calculate
A mod B and bind to R. Finally, call predicate gcd with arguments (B, R, D). If all succeed, D will
be bound to the answer.

Queries

A query in Prolog is a request to Prolog to prove a theorem. Because the question posed is the goal
of the proof process, a query is also called a goal. Syntactically, a query is a list of terms, separated
by commas [Exhibit 13.11]. Semantically, the commas represent “and” operators. If the query has
no variables, Prolog will attempt to prove it from the rules and facts previously given. Thus, in
Exhibit 13.11, the query “?- pretty(rose)” can be proved from the second rule taken together with
the first and fourth facts in Exhibit 13.10.

If the query does contain variables, the Prolog theorem-prover attempts to find a set of instan-
tiations that satisfy the query. All variables in the query are, implicitly, quantified by “∃”; that
is, a query asks whether any set of objects exists that can satisfy the clause. Thus to respond to
the query “?- pretty(Y)”, Prolog tries to find some object, Y, that has the property “pretty”.
It will begin by using rule 1, the first rule given for the predicate “pretty”, and will combine
this with fact 5, instantiating Y to a painting, and producing the output “Y = painting(Monet,

haystack_at_Giverny)”. If the programmer types “;” to ask for another instantiation, Prolog will
continue to search its data base and find the second instantiation, “Y = rose”. If the search is
continued again, no further instantiations succeed, and the answer “no” is printed.

A query may contain a series of predicate terms which will always be processed in order, left to
right, and processing will be aborted if any one predicate cannot be satisfied [Exhibit 13.12. This
built-in conditional sequencing is used where “if” statements and sequences of assignments would
be used in a procedural language.

13.5. PROLOG 379

13.5.4 The Prolog Deduction Process

A query establishes a goal for the deductive process, in the form of a conjunction of terms. To
satisfy this goal, Prolog first takes each individual term in the goal, in order, as a subgoal, and
recursively attempts to satisfy that subgoal.

The subgoal is a predicate with arguments. Prolog begins by finding, in the data base, the rules
for that predicate which have the right arity for the subgoal, and then starts with the first rule. It
attempts to unify the head (conclusion) of the rule with the subgoal; if there is a conflict because
constant terms do not match, Prolog will go on to the next rule for that predicate. If the head can
be unified with the subgoal, it means that this rule is, potentially, applicable.

Prolog then tries to satisfy each of the condition terms on the right side of that rule. To do
this, it searches for a set of facts that “cover” the terms of the goal. If this process succeeds, the
rule is applied to the goal, the goal’s variables are instantiated to the objects discovered by the
unification algorithm, and the set of instantiations is returned to the calling context. At the top
level, the instantiations are printed out.

We can summarize the operation of the Prolog proof process as follows:

1. Work on the leftmost subgoal first.

2. Select the first applicable rule.

3. Search the facts in the order they appear in the data base.

Careful attention to the order in which goals are written, rules are given, and facts are asserted
can improve the performance of the proof system substantially. It makes good sense, when defining
a multirule predicate, to make the first rule the one that will be used most frequently, if that is
possible. For example, in the gcd algorithm [Exhibit 13.13], the rule that ends the recursion must
be written before rule 2, to prevent rule 2 from being invoked with a zero divisor, which would
generate an error. However, rules 2 and 3 could be written in either order, and rule 3 is placed last
because it will be executed at most once, to swap the arguments on the first recursion, in the case
that the first argument is smaller than the second.

The programmer must also be careful of the order of the conditions within a rule. Since these
conditions are taken, in order, as subgoals, and variables become instantiated as the subgoals
succeed, a condition that is intended to instantiate a variable must precede all conditions that
expect that variable to be instantiated. This is like saying, in a procedural language, that variables
must be initialized before they are used. Further, because the conditions are tested in order, a
series of conditions is very much like a nested conditional. Sometimes a condition is simple to test;
sometimes satisfying it can involve a great deal of computation. Where two conditions must both
be true before proceeding with a rule, it is prudent to write the simple one first, so that, if it is
false, it will abort the rule before making the costly test. A simple condition can thus “guard” a
complex or difficult condition.

380 CHAPTER 13. LOGIC PROGRAMMING

Exhibit 13.13. Euclid’s algorithm in Prolog.

These three rules axiomatize Euclid’s greatest common divisor algorithm. The numbers on the left
are for reference only; they are not part of the Prolog code.

1. | gcd(A, 0, A).

2. | gcd(A, B, D) :- (A>B), (B>0), R is A mod B, gcd(B, R, D).

3. | gcd(A, B, D) :- (A<B), gcd(B, A, D).

Backtracking

The recursive descent from goal to subgoal ends successfully when a subgoal is reached that corre-
sponds to a known fact in the data base. The instantiations used to satisfy the subgoal are passed
back up and are used to instantiate the variables in the goal.

The recursive descent ends in failure if the fail predicate is encountered while processing a
rule, or if the entire data base has been searched and no relevant information was found. Failure
of a goal does not mean that the goal is false, only that it cannot be proven from the facts given.
When a subgoal fails, control backtracks, that is, it passes back up to the level of the goal above,
and Prolog attempts to find a different set of instantiations that satisfy the original goal. In terms
of the tree of possible proofs, this amounts to backing up one path until an unexplored branching
point is found, then going down the new branch of the tree. Exhibit 10.36, at the end of Chapter
10, illustrates this recursive backtracking.

13.5.5 Functions and Computation

A programmer trying to solve a problem or model a system starts with a set of inputs, in some
given form, and wishes to derive from them a set of outputs. In a language like C, this is done by
defining functions to carry out a series of calculations and manipulations on the data that produce
a result in the desired form. We call this procedural programming.

We might view the same problem in a different way. Instead of specifying the method to reach
the desired output, we could describe the output desired, in a declarative, axiomatic language.
Prolog is a language for axiomatizing a desired result. The process of computation, in a C program,
is replaced by the process of proof in Prolog, where a proof consists of finding a data object that
satisfies the formula for the result. Thus ordinary computation, as well as data base searches, can
be expressed in Prolog.

Computation

In place of a C function that returns an answer, a Prolog programmer writes a predicate with one
additional parameter, which will be used for returning the answer. It is customary to write the
output parameter or parameters last. Instead of instructions to perform a computation, the Prolog
programmer writes axioms to verify that the answer is correct. During the proof process, the

13.5. PROLOG 381

Exhibit 13.14. Euclid’s algorithm in C.

int gcd(int A, int B)

{ int D;

if (B >A) D=B, B=A, A=D; /* swap */

do D=(A % B), A=B, B=D;

while (D >0);

return A;

}

output parameter names become bound to values that have been verified, and these values are then
returned to the calling environment. If the predicate involves an actual arithmetic computation,
one of its rules will contain an is clause, which directs Prolog to actually evaluate an expression
and bind its result to a variable so that it can be returned.

An example of ordinary computation expressed as a Prolog predicate is the implementation of
Euclid’s algorithm for calculating the greatest common divisor of A and B [Exhibit 13.13]. This
recursive definition has three rules. The first rule stops the recursion when the gcd has been found.
The second rule does the work. It is a recursive axiom that says that the gcd of two numbers, A
and B, is also the gcd of B and (A mod B), and the gcd of every remainder calculated. The third
rule is invoked only when the second argument is larger than the first, and it simply reorders the
arguments so that the larger one is first.

Let us compare the Prolog gcd program with the same algorithm expressed in C [Exhibit 13.14].
We see that the C program requires more syntactic details—such things as type declarations for
the parameters and an explicit return statement. As in Miranda, Prolog variables are untyped,
but objects are typed and their types are deduced by the system. Return values are implemented
as output parameters in Prolog, and the value is returned by Prolog’s action (during unification) of
instantiating the output parameter.

The three Prolog rules for gcd are exactly echoed in the remaining three lines of the C program.
Rule one corresponds to the while—both stop the recursion/iteration when the answer has been
calculated. Rule two corresponds to the do—both perform one mod operation and shift the argu-
ments to the left for the next recursion/iteration. Finally, rule three corresponds to the if—both
just swap the inputs. Thus we see that an axiomatic expression of an algorithm can look and work
very much like a procedural formulation.

Sorting

Algorithms, such as sorts, that manipulate data can also be expressed axiomatically. An axiomati-
zation of quicksort is shown in Exhibit 13.15. The quicksort function is expressed as a recursive
function with three rules. Rules 4 and 5 are the base cases for the recursion, and they stop it when

382 CHAPTER 13. LOGIC PROGRAMMING

Exhibit 13.15. Quicksort in Prolog.

1. | split(_,[],[],[]).

2. | split(Pivot, [Head|Tail], [Head|Sm], Lg) :-

| Head<Pivot, split(Pivot, Tail, Sm, Lg).

3. | split(Pivot, [Head|Tail], Sm, [Head|Lg]) :-

| Pivot<Head, split(Pivot, Tail, Sm, Lg).

4. | quicksort([],[]).

5. | quicksort([Head|[]], Head).

6. | quicksort([Pivot|Unsorted], AllSorted) :-

| split(Pivot, Unsorted, Small, Large),

| quicksort(Small, SmSorted),

| quicksort(Large, LgSorted),

| append(SmSorted, [Pivot|LgSorted], AllSorted).

the list to be sorted has zero elements or one element. Rule 6 does most of the work. It separates
the argument (a list) into three parts (smaller values, pivot, and larger values), sorts the parts, then
appends them together in sorted order. Quicksort calls a subroutine, named split, that actually
does the separation.

The task of split is to separate the list into a sublist of small values and a sublist of large
values by comparing each list element to the Pivot. The input arguments are Pivot, the first value
on the sublist that is being sorted, and Unsorted, the rest of that sublist. The value of Pivot
will be compared to each element of Unsorted, and the elements of Unsorted will be divided into
two lists, those smaller than Pivot and those that are larger. The last two arguments, Small and
Large, are output parameters that split will use to return the sorted Small and Large sublists.

Split is implemented recursively, by three rules. Rule 1 is the base case for the recursion; if
the argument is the null list, it will return immediately with null lists as its output parameters.
Each time split is called with a list of at least one item, either the second rule or the third will be
used. In both cases, the symbol Head is bound to the first item remaining unsorted list, and Tail

is bound to whatever remains. On the next call, the first item of Tail will be peeled off. This will
continue until the remaining tail is null, at which time the first rule for split will terminate the
recursion.

The second rule for split is applied whenever the first item on the Unsorted list is smaller
than the Pivot. This first item is peeled off and remembered, then split calls itself recursively
to process the items remaining on the unsorted list. When this recursive call returns, all items
smaller than the Pivot will be on the list Sm, and all larger ones will be on the list Lg. Since the
Head element was smaller than Pivot, it belongs on the Sm list, and so it is appended to the front
of that list. The extended Sm list and the Lg list are then returned to the calling routine.

13.5. PROLOG 383

Exhibit 13.16. Quicksort in C.

Notes on this code are given in Exhibit 13.17.

int * split(int *first, int *last)

{ int *small; /* small is a left-to-right scanner. */

int *large; /* large is a right-to-left scanner. */

int swap, pivot = *first;

int *scan;

for(small=first, large=last+1; ;)

{

while (* ++small < pivot); /* Scan until large item is found. */

while (* --large > pivot); /* Scan until small item is found. */

if (small >= large) break; /* Quit if scanners have crossed. */

swap =*large; *large=*small; *small=swap;

}

*first = *large; *large = pivot;

return large; /* This marks the split point. */

}

void quicksort(int * first, int * last)

{ int * split_point;

if (last<=first) return; /* Only one item -- no action needed. */

split_point = split (first, last);

quicksort (first, split_point-1);

quicksort (split_point+1, last);

}

The third rule for split is applied whenever the first item on the Unsorted list is larger than
the Pivot. Its operation is just like the second rule, except that, because the Head element is bigger
than the Pivot, it is concatenated to the Lg list.

Let us look at how the Prolog proof system is being used here to implement a sort procedure, and
compare it to a quicksort program written in a procedural language. In C, the code for quicksort
uses recursion, explicit iteration, explicit conditionals, comparisons, pointers, and assignments [Ex-
hibits 13.16 and 13.17]. In contrast, the Prolog code uses only recursion and comparison. How
is the rest of the work done? First, note that in both languages, the main quicksort routine is
recursive. However, the split routine is tail-recursive in Prolog but iterative in C, for efficiency.
The act of calling a routine recursively looks just the same in the two languages, and it has the
same semantic effect.

The data structures used are different; the Prolog version sorts a list, while the C version sorts

384 CHAPTER 13. LOGIC PROGRAMMING

Exhibit 13.17. Notes on the C quicksort.

1. The parameters first and last must be pointers to the beginning and end of an array of
integers. On exit from quicksort, the values in this array are in sorted order. Pointers,
rather than subscripts, are used to index the array.

2. A sentinel value equal to maxint must follow the last data element to stop the left-to-right
scanning pointer in the case that the pivot value is the largest value in the array.

3. The inner while loops identify the leftmost and rightmost elements that are stored in the
wrong part of the array. These two elements are then swapped.

4. After exit from the for loop, all items to the left of small are small (less than or equal to
pivot value) and all items to the right of large are large. The large scanner points to a
small element, and small either points to the same thing or points to the large element on
large’s right.

5. Before returning, the pivot element is swapped into the middle, between the small and large
elements. This is its final resting place. The small and large areas remain to be sorted by
future recursive calls on quicksort.

an array. The action of moving through the elements of the list is accomplished in Prolog by
recursively binding a local name, Tail, to the list with its head removed. This recursive binding
takes the place of the increment (“++”) and decrement (“--”) operations in C, both of which have
assignment as a side effect.

Binding and concatenation are used in Prolog in place of the assignment operations in C. As
Prolog’s split pulls each item off the unsorted list, it binds the item to a local variable name,
Head. Since the function is called recursively, once for each element on the unsorted list, enough
bindings are created to hold all the list elements. As each call to split returns, the bound item is
appended to the list returned by the lower level. In contrast, the C version uses iteration instead
of recursion to perform the split operation. New storage is not created; rather, assignment is used
to swap pairs of values in the original storage area.

The sequential execution of C statements is echoed exactly in the sequential application of the
subgoals in each Prolog rule. Thus the main routine, quicksort, looks almost the same in the two
languages.

Finally, in the C code, explicit if statements are used to end recursion in quicksort and to end
the split operation, and while statements are used to determine whether an element belongs in
the small or the large part of the array. In Prolog all this is accomplished by the elaborate pattern
matching algorithm (unification) that is built into the proof system. Prolog uses unification to

13.5. PROLOG 385

select which rule to apply when split is called, which determines whether the next step will add
an element to the small list or the large list, or end the recursion.

13.5.6 Cuts and the “not” Predicate

Two major theoretical results have had a strong bearing on Prolog: clausal logic is complete but
not decidable. So although every true clausal theorem can be proved, no effective procedure can
ever exist that will always produce a proof and terminate in a finite amount of time. This means
that if the Prolog proof system relied on resolution alone, a programmer might not know of not
knowing whether a given query would ever be answered. Prolog does have a way, called a cut, to
control the proof process so that a programmer can avoid being trapped in lengthy deductions that
seem likely to be fruitless. However, when the cut operation is used for this purpose in Prolog, it
destroys the completeness of the proof system and leaves open the possibility that a provable goal
might fail.

Cuts

A cut is written as “!” and may appear as one of the conditions in a rule.3 Informally, a cut prunes
off one branch of the proof-search tree by telling the proof system to abandon a chain of reasoning
under certain conditions. In some ways it is analogous to a break instruction.

Perhaps the best way to think of a cut is to imagine that it is a barrier, placed by the programmer
in a rule, to stop fruitless backtracking. Consider a rule with several terms:

P : −Q,R, S, !, T, U, V.

In trying to satisfy this rule, the proof system starts by searching for a unification of conditions Q,
R, and S. Backtracking might occur several times during this search, and control might go back as
far as condition Q. If Prolog fails to satisfy this part of the rule, it will go on to try the next rule
for P . However, if the conditions Q, R, and S on the left are eventually satisfied, control passes
through the cut to the conditions T , U , and V on the right. At this point, all variable bindings for
conditions Q, R, and S are frozen, or committed, and the information that would permit Prolog to
backtrack back through these conditions is discarded.

The proof system now begins to try to find a unification for conditions T , U , and V that is
consistent with the frozen bindings. Again, a great deal of backtracking can happen among these
clauses, and, perhaps, some unification of the whole rule may be found. In this case, the rule
succeeds, and a unification is returned. If (during backtracking) control ever returns to the cut, it
means that the attempt to unify conditions T , U , and V with the frozen bindings has failed. At
this point, the two pruning actions of the cut take place:

1. Instead of returning to reinstantiate the left part of the rule, the entire rule fails immediately.

3Do not confuse this meaning of the term “cut” with the meaning of “cut” in a resolution step of clausal logic.

386 CHAPTER 13. LOGIC PROGRAMMING

Exhibit 13.18. “Cutting” off a search.

These predicates axiomatize what it means to be on academic probation at a hypothetical university.
Loosely, the requirement is that the closer a student is to graduation, the closer the student’s grade
point average must be to the minimum gpa for graduation, which is 2.00. (We use the integer form,
200, rather than the decimal form, 2.00, in this code.) Each student is represented in the data base
by a fact of the form shown in Exhibit 13.19.

1. | year(S, Y) :- student(S,Y,_).

2. | gpa(S, G) :- student(S,_,G).

3. | probation(S, X):-year(S,fr), !, gpa(S,X), X<150.

4. | probation(S, X):-year(S,so1),!, gpa(S,X), X<160.

5. | probation(S, X):-year(S,so2),!, gpa(S,X), X<170.

6. | probation(S, X):-year(S,ju1),!, gpa(S,X), X<180.

7. | probation(S, X):-year(S,ju2),!, gpa(S,X), X<190.

8. | probation(S, X):-year(S,se), gpa(S,X), X<200.

2. The goal that caused this rule to be processed also fails and no more attempts are made to
satisfy the predicate, even if there are more, untried rules for it.

Safe Cuts. A safe cut is one that cannot possibly cause a provable goal to fail. These are used for
the sake of efficiency, in situations where the conditions that guard the various rules for a predicate
are mutually exclusive. This is illustrated by the code in Exhibit 13.18, which determines whether
a student should be put on academic probation. (Students are listed in Exhibit 13.19.) The grade
point average needed to avoid probation becomes higher each year. Thus one rule is included in
the probation predicate for each grade-point level involved.

If we ask “probation(tal)”, the query will fail, because tal is a fine student. In the process
of answering this query, Prolog will have looked at all the rules for the predicate probation and
will have failed to satisfy the “year(S,Y)” term on all but the last rule. In this case, the cuts
in the prior rules have no effect. Similarly, the cuts have no effect during processing of the query
“year(S,se), probation(S,G)”, and Prolog will return with the instantiation “S=rae, G=195”
indicating that rae is, indeed, in trouble.

Exhibit 13.19. Data for the probation predicate.

student(ali, so1, 195). student(dale, ju2, 189). student(jan, fr, 372).

student(jess, fr, 142). student(ken, fr, 199). student(les, so2, 315).

student(mark, so1, 152). student(nan, so2, 170). student(pat, ju1, 175).

student(rae, se, 195). student(sal, ju2, 298). student(tal, se, 400).

13.5. PROLOG 387

Exhibit 13.20. The “not” in Prolog.

Definition of not:

1. | not(X) :- X, !, fail.

2. | not(_).

The condition not(X) succeeds if X fails, and fails if X succeeds.

Similarly, there is no inefficiency problem if we ask “probation(jess,G)”. Prolog tries rule 3
first, finds that it describes jess well, and succeeds with the instantiation G=142. No backtracking
ever happens.

However, if we ask “probation(jan,G).”, Prolog finds that rule 3 for probation should be
processed because jan is a freshman. It then finds jan’s gpa, compares it to the minimum for
freshmen, and fails. This failure initiates backtracking, and control backs up to the cut without
finding any other instantiations for X. If the cut were not there, backtracking would continue; rule
3 would then fail, and rules 4 through 8 would all be tried and fail on the year condition. All this
work is nonproductive because a student who is a freshman cannot simultaneously fall into any of
the other categories. The presence of the cut in rule 3 acts like an else clause and eliminates the
fruitless testing of all the other rules. In a chain of exclusive conditions, therefore, each rule except
the last should be written with a cut.

Cuts Implement the Operator not. Perhaps the reader has noted the conspicuous absence of
“not” in any of the examples given. One of the restrictions placed on both rules and queries is that
the conditions must all be nonnegative. This is required in order to permit the use of resolution as
a proof system.

Of course, several of the built-in predicates have a negative form also—for example, we have
both “=” and “\=”. The Prolog language does include a built-in not operator which can be applied
to a condition term. However, not is problematical and the results obtained by using it can be
misleading. Consider what happens during processing of not, whose definition is shown in Exhibit
13.20:

• If X is false, rule 1 fails before passing through the cut.

• In that case, rule 2 is used. This rule always succeeds, no matter what its argument is, and
it instantiates nothing.

• If X is true, control passes through the cut in rule 1 and comes to the fail. This term always
fails, initiating backtracking.

• When the backtracking reaches the cut, rule 1 fails, and since rule 2 is not used because of
the cut, the predicate fails.

• The result is that not(X) succeeds if X fails and fails if X succeeds.

388 CHAPTER 13. LOGIC PROGRAMMING

Exhibit 13.21. The trouble with “not”.

Suppose we have the simple predicate test:

test(S, T) :- S = T.

The problems with not are illustrated by this transcript of a test run:

?- test(3, 5).

no

?- test(5, 5).

yes

?- not(test(5, 5)).

no

?- test(X, 3), R is X+2.

X=3

R=5.

?- not(not(test(X, 3))), R is X+2.

!error in arithmetic expression: not a number.

The responses to the first four queries are exactly what one expects. However, the final one is a
surprise, since the query is the double-not of the preceeding query, but the response is different!

The disturbing fact about not is that the results of evaluating the predicates P and not(not(P))

are not necessarily the same, and the results of evaluating the predicates P and not(P) are sometimes
the same! This is illustrated by the simple example in Exhibit 13.21. This difficulty is caused by
the fact that not is implemented using a cut, and when we backtrack to a cut, the goal fails. Thus
we see that the last query in Exhibit 13.21 fails, even though it seems that it should not.

One last difficulty with not arises from the fact that clausal logic is not decidable. In practical
terms, this means that sometimes we can prove a theorem, T , sometimes we can prove its negation,
not T , and sometimes we cannot prove either! In the last case, the theorem is true in some models
of the theory but not in others, and we certainly cannot conclude that T is false just because we
cannot prove that T is true. However, when Prolog cannot prove that T is true, the predicate
not(T) succeeds. This is so, even if the reason for the failure of T is that the data base contains
too little relevant data or that the programmer made a program-sequencing error! Obviously, we
must be extremely careful when using not.

Unsafe Cuts. Sometimes a programmer might decide to use a cut when implementing some
heuristic part of a computation. In this case, the programmer knows that there is some possibility
that the desired solution may lie on that part of the proof-tree that is being cut off. Use of the
cut for such purposes is considered to be “impure”, since it destroys the completeness of the proof
system. However, in many artificial intelligence and optimization problems, it may not be possible,

13.5. PROLOG 389

because of time constraints, to fully explore the proof-tree. Pruning the tree might eliminate the
best solution, and it might even eliminate the only solution, but if the heuristics are skillfully chosen,
these unhappy outcomes can be largely avoided. On the positive side, skillfully used heuristic cuts
can dramatically speed up processing and reduce the memory requirements of a computation to be
within practical limits.

13.5.7 Evaluation of Prolog

Prolog will not be appropriate in applications where efficiency is a major consideration. Its perfor-
mance is limited by its interactive, interpretive nature, and by the lack of destructive assignment
operations. All computation is done through parameter binding, and parameter binding is done
by the complex and relatively slow unification algorithm. Further, the programmer has only lim-
ited control over execution order. Ordinary applications that can be programmed directly in a
procedural language such as C will be more efficient than the same applications in Prolog.

However, Prolog is a very attractive language for applications in which the programmer does
not know how to organize the data or the computational process. It can be used to express some
kinds of information much more directly than the common procedural languages, and it makes it
possible to integrate procedural program elements with nonprocedural ones.

Finally, because order of evaluation is left largely unspecified, Prolog is useful for applications
in which parallel evaluation is required. It will be an appropriate language for implementation on
computers with highly parallel architecture, such as the Connection Machine.

Exercises

1. What is the difference between computation and deduction? In what sense are they analogous
processes?

2. What is a universe of discourse?

3. What does it mean to instantiate a variable? How are variables instantiated in the process
of deduction?

4. What is a term? A predicate? A sentence? Make clear what the differences are among these
concepts.

5. Give an example of a 3-ary predicate.

6. Given the predicates in Exhibit 13.1, are the following instantiated predicates true or false?

a. odd(13)

b. odd(7+3)

c. divide(45,5,9,0)

390 CHAPTER 13. LOGIC PROGRAMMING

d. divide(56,5,11,3)

e. father(Isaac, Abraham)

7. What is the difference between the meaning of ∃X and ∀X ?

8. Which of the following quantified predicates is true? What is the negation of each?

a. ∀Y even(Y)

b. ∃X even(X)

c. ∀X X=X+0

d. ∃X ∀Y X=Y+1

e. ∀X ∃Y X=Y*1

9. Define and explain the relationship between axioms and theories.

10. How is it possible for a theory to have more than one model?

11. What is a proof? A refutation?

12. Write an example of a Horn clause in the form of a disjunction of terms. Write a logical
sentence that is not a Horn clause.

13. If a theory has only unconditional axioms (no conditional axioms), the theory has very few
theorems and all the proofs are quite boring. Explain.

14. Write examples of conditional and unconditional Horn clauses. Write a Prolog sentence that
corresponds to each.

15. What are the elements of the Prolog programming environment?

16. A Prolog rule specifies a set of constraints that must be simultaneously true to draw a con-
clusion. Explain how each part of a rule fits this description.

17. Given the data base in Exhibit 13.10, how would Prolog respond to the following queries?

(a) a. pretty(violet).

(b) b. watchout(holly).

(c) c. watchout(X),pretty(X).

(d) d. watchout(X),color(X,green).

18. Prolog cannot always prove a true assertion and it cannot always disprove a false assertion.
Explain.

19. In Prolog, a fact is a single nonnegated term, such as pretty(mary). The same term, or a
similar one such as pretty(pat) or pretty(X), can be a query. However, a term that is a
fact and one that is a query have different meanings. Explain.

13.5. PROLOG 391

20. Given these facts and rules:

facts rules

flower(crocus, spring, white). color(F,C) :- flower(F,S,C).
flower(violet, spring, blue). color(T,green) :- tree(T).
flower(iris, summer, blue). pretty(F) :- color(F,red).
flower(rose, summer, red). pretty(F) :- color(F,blue).
flower(marigold, summer, orange). grows(X) :- tree(X).
tree(holly) grows(X) :- flower(X,Y,Z).

Find all sets of instantiations that unify each of the following pairs of clauses:

(a) a. flower(F,spring,Y), pretty(F).

(b) b. flower(F,summer,Y), pretty(F).

(c) c. grows(X), pretty(X).

(d) d. flower(Z,Y,orange), pretty(Z).

21. Discuss the difference in efficiency between the C quicksort [Exhibit 13.16] and the Prolog
version [Exhibit 13.15].

22. Compare and contrast the operation and efficiency of the Miranda gcd algorithm [Exhibit
12.12] and the Prolog version [Exhibit 13.13].

23. Compare the clarity of code in the C quicksort [Exhibit 13.16] and the Prolog version [Exhibit
13.15]. Which do you think is easier to understand? Why?

24. What are the syntactic similarities and differences between the Miranda quicksort script [Ex-
hibit 12.19] and the Prolog quicksort [Exhibit 13.15]?

25. Compare and contrast the operation and efficiency of the Miranda quicksort script [Exhibit
12.19] and the Prolog quicksort [Exhibit 13.15]?

392 CHAPTER 13. LOGIC PROGRAMMING

Chapter 14

The Representation of Types

Overview
We began the discussion of types in Chapter 5 by the primitive types supported by
languages and their connection with the hardware types supported by typical computers.
In this chapter we consider the implementation of both primitive and user-defined types.
Finally, we continue in Chapter 15 with a discussion of the semantics of types.

To augment the primitive types, most languages permit types to be defined by the
programmer. A type definition enables the programmer to define the physical properties
of a new type and to name it. A type object represents this type information inside the
translator. It is composed of three parts: a name, a type, and a body of information.
Various types of types include: primitive, array, record, and enumerated. Each kind of
type has its own declaration syntax and corresponds to a distinct type of type object
within the translator.

We consider simple types (enumerated types, constrained types, pointer types) com-
pound types (arrays, strings, sets, records), and union types (free and discriminated).

Operations which can be performed on compound objects include value construction—
the combination of a set of components into a single compound object, selection—which
enables the programmer to reference a part of the compound object, and dereferencing—
which maps a reference into a program object or value. Modern programming languages
implement some or all of these to various degrees.

393

394 CHAPTER 14. THE REPRESENTATION OF TYPES

14.1 Programmer-Defined Types

A data type is a set of objects with an associated set of functions that permit us to manipulate
the objects. To use a type we must be able to represent those objects and functions in our source
code and in the computer. A type definition gives us ways to do both. It supplies all information
about the physical properties of the new type, and gives names to the type itself, and, if it is a
structured type, to its parts. From this information, a translator can build constructors, selectors,
and predicates that let us create and manipulate objects of the new type.

In this section, we examine the ways in which types can be represented in the source code and
within a translator.1 A new type representation may be defined by:

• Listing all its members.

• Placing restrictions on an existing type.

• Combining elements from existing types into an aggregate.

We will look at typical forms for these kinds of type declarations and see how a translator uses the
information they provide.

14.1.1 Representing Types within a Translator

Whether a type is primitive or defined by the programmer, the properties of the type are stored by
the translator when the type is defined. For the time being, let us imagine that all this information
is stored in one place, and let us use the term type-object to refer to the collection of information that
the translator stores about a type. In reality, depending on the language being implemented, the
type information could be stored coherently in a type-object, or it could be scattered throughout
various translator tables. Moreover, the amount and nature of the information stored varies from
language to language, even for similar data types.

There are various types of types: primitive types, array types, record types, enumerated types,
and others. For each type of type, a different collection of information must be supplied by the
programmer and stored by the translator. Thus a type-object can be seen as a three-part entity,
having a name (usually2), a type, and a body of information, which we will refer to as the body.
The type of a type tells us how to interpret the body of the type, and the body of the type tells
us how to interpret objects of that type. Every kind of type declaration supported by a language
corresponds to a distinct type of type within the translator.

A data object also consists of a name, a type, and a body of information. The name is kept in
the symbol table, and the type, represented by a pointer to a type-object, may be attached either
to the name or to the body, depending on the language. Let us diagram objects as shown in Exhibit

1Chapter 15 covers the semantics of types and the ways in which distinct meanings, or semantics, can be given to
types with the same representation. In this section we are concerned primarily with the representation of types, not
the semantics of similarly represented types.

2In some languages, it is possible to create a type with no name.

14.1. PROGRAMMER-DEFINED TYPES 395

Exhibit 14.1. Object diagrams.

object’s name
type body

14.1. The object is represented by a “T” shaped figure, with the object’s name (if there is one)
written on top, the type on the left, and the body on the right. The type of an object is always a
pointer to some type-object. The body of a variable is a storage object and will be diagrammed as
a box. The body of a constant or a type is a series of data values.

The body of a type must contain enough information to support whatever semantics are defined
for the type. The nature and amount of this information varies among the different types of types,
and from language to language. Examples are: the base type of a pointer or array type, the
dimension of an array, and the order, types, and names of the fields of a record type. In addition,
a type body might contain extra or redundant information, designed to make use of the type more
efficient. One such redundant fact might be the total size, in bytes, of an object of this type. While
this might be calculated from other information, it is used frequently and should be kept “handy”.

We will define (somewhat arbitrarily) general and useful type-objects for each type of type
as we consider it. Although examples of type declarations are drawn from several languages, we
should emphasize that the type-objects diagrammed do not necessarily reflect existing translator
mechanisms for those languages. However, they would be appropriate as part of the semantic basis
of a new object-oriented language with similar features.

Type-objects for the primitive types are defined by the compiler itself. We will diagram a
primitive type body by listing only the size, in bytes, and denote the rest of the type’s definition
as a “code definition”. An integer variable named “year” is diagrammed, with its type, in Exhibit
14.2.

Exhibit 14.2. An integer object and its type.

integer
2 bytes
code definition

primitive
 type

year

1935

396 CHAPTER 14. THE REPRESENTATION OF TYPES

14.1.2 Finite Types

When a type is semantically unrelated to existing types and has a small number of members, it
is practical to define it by simply listing, or enumerating, identifiers for the members of the type.
These are called the type constants.

If a language supports enumerated types, it must also provide some functions that are auto-
matically defined for every enumerated type. Comparison for equality must be supported. Other
useful and common functions include comparison for inequality, successor, and predecessor. Input
and output routines are sometimes supplied.

The programmer supplies only identifiers for the type constants; the translator must create an
encoding for them. The obvious encoding is to use the integers, in order, starting with zero, to
represent the type constants. This encoding makes it easy to implement comparison and successor
functions; the corresponding integer functions are simply carried over to the new type. The stan-
dards for both Pascal and ANSI C explicitly state that the enumerated type will be represented by
integers.3

As is common when languages are compared, type declarations that are syntactically very
similar can create types with widely varying semantics. C is a language at one extreme. The
enumerated type declaration is no more and no less than a convenient way to define identifiers
for integer constants. An enumerated type, in C, is implemented by type int and has semantics
identical to int. This is consistent with the use of types in C primarily to allocate and access
data objects, rather than as a vehicle for semantics. Enumerated type constants are represented
as integers and are considered to be integers. Characters and truth values, the two primitive
enumerated types, are integers in C.

The treatment of enumerated types in Pascal is like C, with one very important exception: the
enumerated type is semantically distinct from the type integer, which is used to represent it. Type
integer is incompatible with enumerated types in Pascal. This means that you cannot, for example,
multiply two values of an enumerated type in Pascal, as you could in C! Nor can you mix values of
two different enumerated types in an expression.

There are some functions that are predefined for any enumerated type in Pascal. These are:
Succ (successor), Pred (predecessor), Ord (conversion to type integer), assignment, and all the
comparison operators. An enumeration constant or variable may also be used as a subscript.
These functions are enough to make enumerated types useful, but not enough to make their use
convenient. Unfortunately, Pascal lacks convenient means to read in and print out enumerated
constants. Thus every program that uses an enumerated type must contain code to perform input
and output conversions. Often this takes the form of two rather tedious CASE statements.

We can only speculate why enumerated I/O is not supported in Pascal. One possibility is that
the idea was so new when Pascal was designed that Wirth did not realize that omitting I/O would
limit the uses of enumerated types. A more likely explanation is the quest for simplicity. Pascal
I/O is very simple and less flexible than the formatted I/O functions provided by many languages.
Pascal provides less control over detail than FORTRAN, C, or APL. Adding enumerated I/O would

3
C permits programmers to use the default codes or assign their own integer codes.

14.1. PROGRAMMER-DEFINED TYPES 397

Exhibit 14.3. A type-object for an enumerated type.

TYPE warm = (red, maroon, magenta, pink, coral);

name
size
list of identifiers

enum
type

warm
1 byte
"red","maroon","magenta","pink","coral"

enum
type

have complicated a simple and elegant design, and may have been considered too unimportant to
justify this cost.

To provide I/O for enumerated types, a language definition would have to include format de-
scriptors for type constants. A translator would need the constant identifiers available at run time,
so that inputs could be encoded and outputs decoded, automatically. Thus a type-object for an
enumerated type would need to contain a list of pointers to the names (represented as character
strings) [Exhibit 14.3].

Sending type constants to the output stream is easy enough, but some uniform way would be
needed to recognize them in the input stream. All of these things are easy enough to define and
implement, and support for input and output would make enumerated types considerably more
useful.

An implementation of enumerated type I/O would increase the complexity of the compiler’s
I/O system and increase the amount of system code that would be included with a program at
run time. In a program that used enumerated types, there would be a corresponding decrease in
programmer-generated code, because programs would not need to manually encode and decode the
enumerated constants. Overall, the costs seem modest and the benefits real.

14.1.3 Constrained Types

Some languages permit a programmer to define a new type by applying constraints to an existing
type. This is a powerful tool for expressing semantic intent. If a language supports constrained
types, the run-time system for that language must check each value of the type to ensure that it
obeys the constraint. The type-object must therefore include the base type and the limiting values.

Pascal and Ada provide subrange type declarations which define a new type whose members
are a consecutive subset of an existing simple type. The programmer specifies the initial and final
values that will belong to the new type. (The base type of these values is implicit.) Exhibit 14.4
shows a type-object for a Pascal subrange type.

Values of the constrained type and the underlying base type are compatible and may be com-
bined in operations. Functions for either type may be applied to the other. However, a computed
value is checked (at run time) before assigning it to a constrained variable; any violation of the

398 CHAPTER 14. THE REPRESENTATION OF TYPES

Exhibit 14.4. A constrained type in Pascal.

TYPE age = 0..150;

name
size
base type
limit valuessubrange

 type

2 bytes

0,150

age

integer
subrange
 type

constraints causes a run-time error.
C does not support subrange types. This is consistent with the general philosophy that C types

are used to define storage configurations, not semantics. A constraint has no effect on the size or
the encoding of the representation; it is relevant only to the semantics of values of that type. (A
value may be acceptable or not in the constrained type, while all representable values are legal for
the base type.)

14.1.4 Pointer Types

All pointers represent machine addresses, so the semantics of a pointer type do not depend on
the semantics of its base type. (The base type of a pointer is the type of the object to which the
pointer points.) Moreover, the size of a pointer is quite independent of the base type, so no storage
layout information is needed in the body of a pointer type except the size of pointers on the target
machine. Any pointer value will physically fit into any pointer variable.

This innate relationship among pointer types is exploited in FORTH. It supports pointers in
the sense that the address of any object can be obtained and stored in an integer variable. Pointer
arithmetic (implemented in terms of integer arithmetic) is possible, and integer variables may
be declared and used for pointer values. However, no distinction is made between pointers with
different base types.4

Most languages, however, require the programmer to declare the base type of every pointer.
Therefore, we will diagram a pointer type as shown in Exhibit 14.5. Information about the base
type of a pointer is not needed for allocation or for access. It is required only by languages whose
compilers use that type information to determine the semantics of the program. Even among
languages that require declaration of a pointer’s base type, that type information may be used in
the following different ways:

1. To compile the correct meaning of ambiguous operators, such as “+”.

2. To determine the number of bytes to fetch when a pointer is dereferenced and used in an
expression.

4Indeed, no distinction is made between pointers and integers!

14.1. PROGRAMMER-DEFINED TYPES 399

Exhibit 14.5. A C pointer and its type-object.

We declare and initialize an integer pointer, pk, to point at an integer, k, which is initialized to the
value 5.

int k=5, *pk=&k;

pk

4 bytes

pointer
 type

5
k

2 bytes
code definition

integer

primitive
 type

3. To determine the type of the result of a dereference, so that it may check for type errors.

4. To dynamically allocate space for an object of the base type.

Similar declarations can have very different meanings in different languages. For example, in C,
the base type is used only for purposes 1 and 2. In the following list, assume p is a pointer whose
base type is BT:

1. Arithmetic on pointers is defined in terms of the base type. The expression p+1 will cause p

to be incremented by the length of an object of type BT.

2. The meaning of dereference and fetch depends on the base type. The expression *p +1 will
cause a fetch operation from the memory location stored in p and increment that value by 1.
The number of bytes fetched will depend on BT, which must be a simple, primitive type.

3. In general, C does not perform type checking.

4. The type of the pointer is not used for allocating base-type objects. To allocate a base-type
object dynamically, one refers directly to the name of the base type, not to the pointer.

In contrast, Pascal uses the same information for the last three purposes. In the following list,
assume p is a pointer whose base type is BT, and b is an object of type BT:

1. There are no operations on pointers whose meaning depends on the base type. Dereferencing
is the only pointer operation that is supported, and its meaning is the same for all pointers.

2. Any type of pointer may be dereferenced and used in an assignment. The statement “b :=

p↑;” copies n bytes, where n is the size of BT.

400 CHAPTER 14. THE REPRESENTATION OF TYPES

3. Pascal is a fully type-checked language. In the expression “b + p↑ * 2”, the base type of p
is checked to ensure that it is appropriate for the surrounding expression.

4. The argument to a call on NEW (which performs dynamic allocation in Pascal) must be a
pointer, p. An object is allocated of p’s base type, and the resulting reference is stored in p.

14.2 Compound Types

14.2.1 Arrays

Modern languages permit simple types to be combined to form compound, or structured, types.
These combinations can be positional (arrays, strings) or not (sets), and homogeneous (arrays,
strings, sets) or heterogeneous (records). They can have fixed size (arrays, records) or variable size
(strings, sets). Let us look at typical type declarations, type-objects, and accessing methods for
these compound types.

An array is a fixed-length sequence of elements of a single type, called the base type. The length
of the sequence is called its dimension. Elements of an array are accessed by position, and the
position values of the first and last elements are called the array bounds. In theory, array positions
and bounds could be values of any simple, discrete type, called the index type. Possible index types
include the integers and any type that is implemented by mapping onto the integers. In practice,
various languages are more or less restrictive about the index types that can be used. For simplicity,
in this discussion, let us presume that integers are used for the index type.

To access an individual element of an array, we append a subscript to the array name. This
is an expression (usually enclosed in parentheses or square brackets) whose value falls within the
bounds of the array. The subscript, base address, and base type of the array are used to compute
the effective address, or address of the desired component. This computation is simplest and most
efficient if the language requires zero-based subscripting. In this system, if an array has dimension
D, its bounds are 0 . . . D − 1. The effective address formulas for zero-based and arbitrary-based
subscripting are shown in Exhibit 14.6.

In the old days, when all computer memory was a series of “words” (not bytes) and all numbers
were one word long, arrays of numbers were implemented very simply and efficiently. The array’s
base address was loaded into the computer’s memory address register and the subscript was loaded
into an index register. Then the computer’s indexed-fetch or indexed-store instruction dynamically
computed the desired effective address.

Multidimensional Arrays

Some older languages, such as MAD, FORTRAN, and APL, specifically supported arrays of two or
more dimensions. (Following APL terminology, let us use the word rank to mean the number of
dimensions of an array.) The rank was limited, in FORTRAN, to the number of index registers
available on the host computer, since each subscript was kept in a register for efficiency’s sake.

14.2. COMPOUND TYPES 401

Exhibit 14.6. Formulas for the effective address computation.

Let ba be the base address of the array A, and let size be the number of addressable units (bytes)
required to store a value of the base type of A. Then the effective address corresponding to A[s1]
is:

Zero-based subscript: ba + size ∗ s1

Other-based subscript: ba + size ∗ (s1− lower bound of A)

For a multidimensional array, with zero-based subscripting and declared dimensions d1, d2, . . . , dn,
the effective address corresponding to A[s1, s2, . . . sn] is:

ba + size ∗ ((((s1 ∗ d2 + s2) ∗ d3 + s3) . . .) ∗ dn + sn)

However, computing an effective address for an array of rank n cannot be done simply by adding
together all the subscripts; it requires n−1 multiplications and additions, plus one index operation
[Exhibit 14.6]. An example of a three-dimensional subscript computation for Pascal arrays is shown
in Exhibit 14.7.

Support for multidimensional arrays is important in languages that are intended for use by
scientists and engineers who work regularly with matrices. In these older languages, special syntax

Exhibit 14.7. Effective address computation for Pascal arrays.

Here we give declarations for two arrays of rank 3. Assume that storage for Matrix starts at
location 1000 and storage for Box starts at location 2000. In this implementation, the size of a real
is 4 bytes and the size of an integer is two bytes.

VAR Matrix: array[0..1] of array [0..2] of array [0..4] of real;

Box: array[1..2] of array [5..7] of array [-2..2] of integer;

Matrix has zero-based subscripts, so we use the simpler form of the formula to compute the
effective address corresponding to Matrix[1][2][3].

1000 + 4 * (((1*3 +3)*5 + 3)) = 1000 + 4 * 33 = 1132

Box does not have zero-based subscripts, so the lower bound for each dimension must
be subtracted from the corresponding subscript. Here we compute the effective address for
Box[2][7][-1]:

2000 + 2 *(((2-1)*3 + (7-5))*5 + (-1--2)) =

2000 + 2 *(5*5 + 1) = 2000 + 2*26 = 2052

402 CHAPTER 14. THE REPRESENTATION OF TYPES

Exhibit 14.8. A three-dimensional array in FORTRAN.

REAL AR3

DIMENSION AR3[5, 2, 4]

* Store a number in one element of the array.

AR3[2,2,1] = 17.0

and semantics were provided to support higher-rank arrays [Exhibit 14.8].
Type declarations were invented in the late 1960s, and this changed the way that higher-rank

arrays were implemented. Languages designed since then have array type declarations that define
arrays in terms of an arbitrary base type. Thus a two-dimensional array became, simply, an array
of arrays. Special syntax and special semantic rules were no longer needed to handle higher-rank
arrays; they could be handled by iterating the type definitions and type accessing syntax for rank
one arrays, as shown in Exhibit 14.9, item B.

This is a real simplification in the language. The syntax is simpler because the brackets written
to declare and use subscripts need to delimit only a single expression, not a list of expressions. The
semantics is simpler because the complex formula for computing a higher-rank effective address is
replaced by iterating the simple formula for computing a one-dimensional effective address. The
size of the various base types replaces the declared dimensions in the formula [Exhibit 14.10]. C,
was designed with streamlined simplicity in mind. It supports only zero-based subscripting and
only one-dimensional arrays. A higher-rank array is defined and referenced as an array of arrays.

Pascal, on the other hand, made an interesting concession to custom. Pascal has type declara-
tions and supports arrays with an arbitrary base type, so it does not need to have FORTRAN-like
array notation. However, programmers were used to the multisubscript FORTRAN notation shown
in Exhibit 14.8. So Wirth compromised. The semantic basis of Pascal is like C: it supports only

Exhibit 14.9. Basic and sugared notation for arrays in Pascal.

A. Sugared notation:

VAR Sugared: array[1..3, 1..10, 0..3] of char;

c := Sugared[1, 5, 2];

B. Equivalent array declared using basic notation:

VAR Plain: array[1..3] of array [1..10] of array [0..3] of char;

c := Plain[1][5][2];

14.2. COMPOUND TYPES 403

Exhibit 14.10. Effective address computation for a four-level type.

Assume that storage for the variable named Plain from Exhibit 14.9 starts at address 1000.
Let us compute the effective address for Plain[1][5][2].

Type Dimension Total Size

1. char 1 byte
2. array [0..3] of (1) 4 4 bytes
3. array [1..10] of (2) 10 40 bytes
4. array [1..3] of (3) 3 120 bytes

Effective address = base address of Plain +

(1-1)*40 bytes + (5-1)* 4 bytes + (2-0)*1 byte =

1000 + 0 + 16 + 2 = 1018

one-dimensional arrays. But the syntax of Pascal was extended to include FORTRAN-like subscript
notation, with all subscripts (optionally) included between a single pair of brackets. This “extra”
declaration form is called syntactic sugar because it is unnecessary but makes the language sweeter
and more attractive for many users. The multidimensional notation that the programmer writes
is converted by the parser to the basic notation [Exhibit 14.9]. Of course, the programmer may
always choose to write directly in the basic notation. A Pascal code generator contains semantic
interpretation routines for the one-dimensional notation only.

Ada Arrays and Slices. In the treatment of arrays, as in many other ways, Ada is like a greatly
complicated (and more capable) version of Pascal. Like Pascal, Ada provides syntactic forms for
declaring both arrays of arrays and multidimensional arrays. Unlike Pascal, though, the two forms
are not equivalent! Ada provides an operation called “slicing”5 for arrays of arrays that cannot be
applied to multidimensional arrays.

A slice of an array is the contents of a consecutive series of locations, denoted by the array
name with a range of subscripts. If Ar is an array with bounds 1. . . 10, then the slice from positions
3 through 5 is denoted thus:

Ar(3..5)

A slice can be used in an assignment or a function call. Slicing provides a nice way to do some
array operations coherently that would need to be written with a loop in Pascal or C. However, Ada
slices are not as flexible or as powerful a tool as the APL subscripting facility, described in Section
14.3.2.

5This term was introduced by ALGOL-68.

404 CHAPTER 14. THE REPRESENTATION OF TYPES

Exhibit 14.11. Diagrams of array type-objects.

The type declaration is given using Ada syntax.

type Matrix is array(-5..5, 1..5) of float;

total size
index type
bounds
dimension
element size
base type

type name

array
type

220 bytes

-5, 5
11 slots
20 bytes

20 bytes

1, 5
5 slots
4 bytes @

integer

float

array
type

integer

matrix

array
type

Type-Objects for Arrays

We see that the type-object for an array type in a modern language only needs to have information
about one dimension. For that dimension it must store the total size, the index type, the bounds,
and a pointer to the base type. For efficient use in various computations, it might also contain the
dimension and the size of the base type. Exhibit 14.11 shows diagrams of two array type-objects,
representing an array of arrays in a language with non-zero-based subscripts. Exhibit 14.12 shows
the simpler type representation possible with zero-based subscripts. One number, the dimension,
takes the place of three: dimension, lower bound, and upper bound.

Arrays with Undeclared Bounds. In certain situations it makes sense to declare an array but
not specify the array bounds. This is permitted in some languages if either:

1. The omitted information can be deduced from the context, or

2. The omitted information is not needed by the compiler.

Exhibit 14.12. Diagram of a zero-based array type-object.

The type declaration is given using C syntax.

typedef float [5] vector;

type name

array
type

total size
index type
dimension
element size
base type

20 bytes

5 slots
4 bytes @

vector

integer

float

array
type

14.2. COMPOUND TYPES 405

Where structured initializers may be given for arrays, and a particular lower bound is either
required or is the default, as in C and Ada, the upper bound of an array can be deduced from an
initializer if one is given as part of the declaration. In this situation, omitting the bounds from
the declaration reduces the redundancy and eliminates the chance that the programmer might
miscalculate the dimension needed. However, it also eliminates the chance that the compiler can
detect a faulty initializer. (This is another example of the general rule that redundancy is a pain
to write into a program, but can serve as a double check on the typist’s accuracy.)

An example of the second principle is seen in C. An array parameter may be declared with an
unspecified dimension because C does not use the dimension information for parameters. All C
arrays are passed by reference, so only a pointer is allocated for the array in the function’s stack
frame. Further, C does not perform bounds checks of any sort. Thus the dimension of an array
parameter is immaterial within the function. Within the C subroutine, only the base type of an
array is ever needed.

Contrast this to Pascal which does pass arrays by value, if desired, and does check array bounds.
Both of these facilities can be used to make programs more reliable and easier to debug; however,
this security comes at a high price. The bounds of a Pascal array parameter must be declared and
fixed at compile time. Therefore each function can accept, as arguments, only one fixed size of
array. In C, any length array of the appropriate base type can be passed to a function. Thus the
Pascal programmer must edit and recompile subroutines if the length of the data array changes,
whereas the C programmer only needs to change the declaration of the data array in one routine.

Semantic Protection with Arrays. We have seen how array type-objects are used to allocate
array storage objects and access individual elements. Some languages, such as C, use the type
information for these purposes only. This same information can also be used to identify run-time
errors, as it is in Pascal and Ada. These languages compare the value of the subscript expression to
the declared array bounds, and halt with an error comment if the bounds are violated. Of course,
this slows down execution. However, this cost is probably justified. Semidebugged C programs
often “run wild” and erase the contents of memory, forcing the user to reboot the workstation.
Pascal programs seldom do.

Bounds checking is most useful during program development and debugging. Omitting the
checks during this phase would be penny wise and pound foolish. Although the checking code
consumes execution time and memory space, a single error caught pays for many tests. However,
one might assert that finished production programs should not incur the run-time overhead of
bounds checking because fully debugged programs just don’t run wild. (Of course, one can debate
whether any program is ever fully debugged.) Most programs perform well with these checks
included. Occasionally, a bounds check in an inner loop can cause a significant slowdown and is
therefore undesirable.

The Ada language includes a way to turn off unwanted checking, called a suppress PRAGMA. If
a compiler honors a suppression request (it is not required to do so), type checking is suppressed
throughout the block that contains the pragma declaration. The design of Ada encourages very

406 CHAPTER 14. THE REPRESENTATION OF TYPES

limited and selected use of suppression pragmas. A separate declaration is needed for each kind of
check that is to be suppressed. The programmer is urged to use these only in fully debugged code
that is unacceptably slow, and then to place the suppression declaration in the smallest block that
contains the slow code section. A PRAGMA declaration to suppress bounds checking has this format:

PRAGMA Suppress (Index_Check);

14.2.2 Strings

A string is a variable-length array of characters. In many languages (for example, Pascal and Ada)
the type string is treated as a special case of an array, with an integer lower bound of 1 and a
base type of character. This treatment does not really capture the essence of strings. Strings are
different from general arrays because:

• The length of a string is, in general, unknown at compile time.

• Strings of many different lengths are commonly used together.

• A string variable should be able to “contain” any string.

• A string function should be able to work on any string.

• Strings have special semantics, such as the rule for alphabetic-order comparison of strings
with unlike lengths.

The “strings” supported by Ada and Pascal are not variable-length objects. A string variable
has a declared length and can only contain string values that are short enough to fit within this
maximum. Strings shorter than that must be manually padded with blanks. Using fixed-length
arrays to represent variable-length strings doesn’t really work.

A good representation for strings must embody their essential variable-length nature, use storage
efficiently, provide for efficient processing, and have reasonable error-recovery properties. There are
two representations for string values that meet these criteria: the counted string and the terminated

string.
In a counted string the first byte (in subscript position 0) is an unsigned integer which gives the

length of the string. String functions must calculate the length of a newly constructed string and
store it in the first byte. With this representation, strings can be processed easily using for loops.
The error recovery potential is not ideal, but it is adequate. If a program error happens and the
count byte is changed to a garbage value, any loop that uses the garbage will still terminate after
no more than 255 iterations. No runaway loop in a string function will be infinite and force the
user to reboot a machine.

A terminated string contains only characters, but following the last data character there is a
terminator, probably the null character (ASCII code 0) (strings cannot contain the terminator).
Functions must be written to add a terminator to the end of any newly constructed string. Strings
are normally processed by looping while the data is nonnull. This representation for strings works

14.2. COMPOUND TYPES 407

Exhibit 14.13. A type-object for a null terminated string.

char *str1 = "This is a string literal.";

array
 type

variable

1, variable
1 byte @

integer

char

4 bytes
str1

pointer
 type

well for error recovery. If a program error happens and a null terminator gets “wiped out”, it is
highly likely that another zero byte is somewhere nearby in memory and will terminate the runaway
operation soon.

Both of these representations make efficient use of storage and support efficient string processing.
The null terminated string, used in C, seems to have slightly better error recovery properties.
Exhibit 14.13 shows appropriate type-objects for strings.

Once the representation of a string value is decided, we can deal with the question of string
variables. In a compiled language, storage for variables in run-time stack frames is laid out at
compile time. The size of each allocation is fixed then and is not variable. This conflicts with the
variable-length nature of strings. One good solution is to use a dynamically allocated string storage
area, and let a string variable be a pointer into this area. This is how BASIC and SNOBOL IV are
implemented. All the string functions take pointer arguments and return pointer results. Storage
for newly created strings is taken automatically from the system-managed string store.

C implements a version of strings that is half way between the fully functioning string store and
the fixed-length strings of Pascal. Like BASIC, a string in C is a pointer to an array of characters.
Unlike BASIC, the semantic basis of C does not include a string store, and the string functions do
not allocate new storage. C functions such as “strcat", or string concatenate, require that one
argument be a pointer to a preallocated storage object long enough to store the result. The effect
of this mixed approach is that C’s extensive and powerful string library is less easy to use than the
string facilities in SNOBOL.

There is a good reason why C does not supply automatically managed dynamic storage: simplic-
ity and execution efficiency were both design goals in C. Managing dynamic storage is not simple,
and it requires some sort of string compaction or garbage collection facility. These facilities are
all slow and costly. Using a compaction algorithm becomes necessary when available storage has
all been used and is now occupied largely by dead strings. (A dead string is one that is no longer
bound to any live name or pointer.)

Rather than include a complex dynamic storage management system, the designers of C chose
to let programmers implement whatever portion of such a system might really be needed. One

408 CHAPTER 14. THE REPRESENTATION OF TYPES

standard technique used in C string programs is to implement a dynamic string store similar to
that which is built into BASIC.

14.2.3 Sets

The “set” types supported by Pascal are variants of Boolean arrays. A set value is like a packed
array of Booleans, where each index position, or slot, represents one constant of a subrange type
or enumerated type, called the base type of the set.

The number of constants in the base type determines the number of Booleans in the set value;
the first Boolean in the set value corresponds to the first constant in the base type, and so on. A
set with one member is represented by a Boolean array with one element which is TRUE and all the
others FALSE. A set with several members is represented by an array with several TRUE elements
[Exhibit 14.14].

The “in” operation in Pascal is the selector function for a set. The operands of in are a value
of the base type, v, and a set value, S. The result of the expression v in S is the Boolean value
stored in the position of S that corresponds to v. For example, in Exhibit 14.14, “common” is a set
variable of type “combo”. We would write “IF green IN common” to find out whether “green” is
a “common” color.

The standard mathematical set operations union, intersection, and difference are denoted by
the Pascal operators “+”, “*”, and “-”, respectively. These take operands of a specific set type
and return a result of the same set type. These operators are implemented by applying Boolean
operations to corresponding elements of the two operand arrays. Union is implemented by or, and
intersection by and. Set difference (“-”) is implemented by the composition of “complement” and
“and”.

A Boolean value can be represented by a single bit. In an efficient representation of a Boolean
array, we pack the bits into a series of bytes, so that every bit is used. By packing the Boolean
array, we are able to use the efficient bitwise logical operations to implement set operations. These
operations let you “turn on” and “turn off” bits singly, or several at a time. Turning a bit on
corresponds to adding a member to a set. The diagram on the left in Exhibit 14.15 shows an
appropriate type-object for a Pascal set type.

Although sets are included in Pascal, most languages do not have a corresponding set type
constructor. This is not surprising, since both the semantics and the representation for sets are
somewhat complex. One of the design goals for Pascal was simplicity, and it is interesting to ask
why Wirth included this nonsimple type of type in his design. The reason was a combination of
three factors: completeness, validity, and simplicity.

Completeness. A powerful language should contain constructs that support standard mathe-
matical notation. It should also reflect as many as possible of the capabilities of the typical modern
computer. Including a set type in Pascal, with the representation described, “completes” the lan-
guage in two ways.

14.2. COMPOUND TYPES 409

Exhibit 14.14. A set type in Pascal.

We declare an enumerated type, color, and a set type, combo, whose base type is color. Some
variables of type combo are declared and initialized. The Boolean array representations of these
variables are diagrammed below.

TYPE color = (red, pink, orange, yellow, green, blue, violet,

magenta, brown, black, gray, white);

combo = set of color;

VAR tree, daffodil, iris: combo;

palette, common: combo;

daffodil := [white, yellow, orange, green];

iris := [white, yellow, blue, violet, green];

tree := [white, gray, brown, black, green];

palette := iris + daffodil; { ’+’ means set union. }

common := iris * tree * daffodil; { ’*’ means set intersection. }

In the following representations, a “0” represents a FALSE value, and a “1” represents a TRUE value.

• Cardinality of base type (color): 12

• Number of elements in a combo value: 12

• Size of each element: 1 bit

• Representation of daffodil: 001110000001

• Representation of iris: 000111100001

• Representation of palette: 001111100001

• Representation of common: 000010000001

The bitwise operations on a computer are vital for applications such as number conversion, using
hardware switches, and packing and unpacking data values. With sets, Pascal provides “access” to
the bitwise hardware instructions; that is, it provides a type constructor and some operators that
translate into the bitwise operations.

Sets are a standard mathematical notion that can be used to model quite a variety applications.
By including an efficient implementation of sets and set operations, Pascal supports an important
mathematical notation.

Why, then, does C not support sets? The design goals for C were significantly different from
those for Pascal. The fact that mathematicians use sets was of little importance in designing a
language for systems programming. The need for access to the bitwise operations was compelling,
but it was met in a different, and simpler, way. C includes the bitwise operators “&” (and), “|”

410 CHAPTER 14. THE REPRESENTATION OF TYPES

Exhibit 14.15. Type-objects for set types.

The diagram on the left is a type-object for a Pascal set type. On the right is a type-object
appropriate for an Ada-like implementation of sets as Boolean arrays. We use the type-object
defined, above, for zero-based arrays. The symbols used in these type-objects are defined thus:

• E, an enumerated type, is the base type of this set type.

• N is the number of enumeration constants in E.

• L is the smallest integer greater than or equal to (N/8).

Pascal: Ada:
set type name

E

set
type

packed
array
type

L bytes

N elements
1 bit @

Boolean

E

type name
L bytes

(or), “^” (exor), and “~” (complement), which can be applied to any type of value.
If a C programmer wanted to implement set semantics he or she would define a set value as an

array of unsigned integers, where each integer represents 16 or 32 index positions in the set. To
implement the set operations, the programmer would simply iterate the primitive bitwise operators
as many times as necessary to process each byte of the array. This is a simple and straightforward
implementation. There is no particular need to make sets a primitive type constructor.

Validity. Support for semantic validity was one of Wirth’s most important design goals. All
primitive operations that he included were semantically valid for some primitive type. Strong type
checking ensured that validity was maintained by every operation.

Wirth would have considered the semantics for the bitwise operators in C to be unacceptable.
An unsigned integer type should be used to store unsigned integers, not bit strings. The bitwise
logical operators have no semantic validity when applied to integers. Basically, they can only be
meaningfully applied to packed arrays of Booleans, and that is what Pascal supports.

But semantic validity and completeness were also of primary importance in the design of Ada,
and Ada does not have a set type constructor. It does provide an easy way to implement the set
semantics, though. In Ada, the type one-dimensional array of Booleans is given special semantics.
The logical operators and, or, xor, and not may be applied to one-dimensional Boolean arrays.
The relational operators =, <=, and the like may be applied to any one-dimensional array. Thus
sets can be easily implemented as Boolean arrays. The diagram on the right in Exhibit 14.15
shows an appropriate type-object for this set implementation. Exhibit 14.16 shows a set of Ada

14.2. COMPOUND TYPES 411

Exhibit 14.16. Implementation of sets in Ada.

We declare an enumerated type, color, and a set type, combo, whose base type is color. Some
variables of type combo are declared and initialized. The Boolean-array representations of these
variables are diagrammed below.

type color is (red, pink, orange, yellow, green, blue, violet,

magenta, brown, black, gray, white);

type combo is array(red..white) of boolean;

T: constant boolean := TRUE;

F: constant boolean := FALSE;

tree: constant combo := (F,F,F,F,T,F,F,F,T,T,T,T);

daffodil: constant combo := (F,F,T,T,T,F,F,F,F,F,F,T);

iris: constant combo := (F,F,F,T,T,T,T,F,F,F,F,T);

palette, common: combo;

palette := iris or daffodil;

common := iris and tree and daffodil;

type declarations to implement types analogous to the Pascal color example from Exhibit 14.14.
Exhibit 14.17 shows how corresponding set selection operations would be written in Pascal and
Ada.

Simplicity. Wirth intended Pascal to be a powerful but simple and minimal language. Highly
complex semantic mechanisms did not fit this purpose. He also wished to have a clean, general
design with few special cases and few restricted, special-purpose capabilities.6

A language with suitably powerful array operations would not need a special type of type to

6Note that the special semantics for strings in Pascal is an example of what Wirth wished to avoid. String types
break many of the type rules that govern the rest of the language.

Exhibit 14.17. Selecting a member of a set.

In Pascal we select a member of a set using “in”:

if green in common then ...

In Ada we use a subscript to select a set member:

if common(green) then ...

412 CHAPTER 14. THE REPRESENTATION OF TYPES

implement the semantics of Pascal sets, as shown by the array-of-Booleans implementation in Ada.
APL also supports coherent array operations which make the Boolean-array implementation of sets
easy and straightforward.

But the powerful, general array operations in APL do not meet the criteria of simplicity and
minimality. The solution in Ada (including primitive bitwise operators that are defined only for
one-dimensional Boolean arrays, and coherent array operations that apply only to one-dimensional
scalar arrays) is too nongeneral and special-purpose to meet Pascal’s design goals. While Pascal
sets are not a simple type of type, they are less complex than APL array operations, more elegant
than the Ada solution, and more valid than the C approach.

14.2.4 Records

A record is a compound object consisting of an ordered series of components of heterogeneous types.
These objects are usually implemented by contiguous blocks of memory, in which the fields of a
record object are stored in the order specified by the programmer.7 A modern language permits
the programmer to manipulate a record object coherently or to access its components and process
them individually.

Type-Objects for Records

The type-object for a record will contain all the information needed to allocate and access the
record. For allocation, only the total size of a record storage object is needed. Intuitively, a record
object is no more and no less than the sum of its parts. However, in real implementations, the
storage object for a record may contain more bytes than are needed to store the components, and
the extra bytes will generally contain garbage. This happens because many computers require all
numbers to be aligned on word or long-word boundaries. With word alignment, all objects start at
even byte addresses; with long-word alignment, all addresses are evenly divisible by 4. Padding is
inserted into a record type if the size of some field in a record declaration would cause the following
field to break alignment rules. The amount of padding included (if any) depends on the hardware.
Thus all we can say about the size of a record is that it is at least as great as the sum of the sizes
of its parts.

To access a record component, a compiler needs to know its offset, that is, the number of bytes
between the beginning of the record object and the beginning of the desired field. Each offset is
the sum of the sizes of all preceding fields, plus any preceding padding bytes. When the compiler
processes the list of component types in a record declaration it calculates these offsets and binds
each one to the corresponding record part name. We will represent all this information (offsets,
part names, component types) as part of the type-object for a record [Exhibit 14.18].

7This order is by no means necessary unless a language permits the programmer to circumvent the usual accessing
methods and access the record’s representation directly.

14.2. COMPOUND TYPES 413

Exhibit 14.18. A type-object for a record.

struct personcell{char* name; char sex; float salary; personcell* next};

We would diagram the type personcell as follows:

type name

record
type

total size
number of fields
field offsets
field names
component types

personcell

record
type

14 bytes
4 fields
0, 4, 6, 10
name, sex, salary, next

personcell *
char *

char
float

Exhibit 14.19. Defining a record type in FORTH.

We define functions to allocate and access a record type named personcell. Objects of this type
will be allocated dynamically and attached to linked lists.

: new_personcell

here 10 allot; (Allocate 10 bytes; leave address on stack.)

(Selector functions for the record type personcell. All expect a)

(single argument which is a pointer to a record. All leave on)

(the stack a reference to one component.)

: .name ; (Zero offset for first field.)

: .sex 2 + ; (Assume string pointers take 2 bytes.)

: .salary 4 +; (One byte for sex, one for padding.)

: .next 8 +; (Leave four bytes for double-length integer.)

Assume that the variable employee is a pointer to a personcell record. If we wish to store
a number in the salary field of this employee’s record, we write the following expression. (The
operator D! performs a double-length assignment.)

89700 employee @ .salary D!

414 CHAPTER 14. THE REPRESENTATION OF TYPES

Part Selectors

The part names for a record type are selector functions. Like functions, each one takes an argument
(a reference to a record), performs an action (increments that reference by an offset amount), and
returns a reference to another object (one component). The nature of part names can be seen most
clearly in FORTH. FORTH has no special provision for records, but it permits the programmer
to allocate storage manually, manipulate references to objects, and do address arithmetic. When
a FORTH programmer wants to use records he or she defines an allocation function and a set
of selector functions [Exhibit 14.19]. These selectors are used very much like Pascal part names;
compare the FORTH expression from the last line of the exhibit to the equivalent expressions in
Pascal and C:

FORTH: 89700 employee @ .salary D!

Pascal: employee↑.salary := 89700

C: employee->salary = 89700

So we see that part names can be defined as functions in a language that gives access to low-
level information. Why, then, do most languages provide special declarations? There are several
reasons: convenience, economy, portability, and semantic safety.

Convenience. The part name function definitions in FORTH are simple and brief, but even
so, they are somewhat of a nuisance to write out. The record type declaration is clearly a more
convenient way to convey this information. A type declaration conveys all the relevant information
concisely.

Economy. Implementing selectors as ordinary functions is overkill. Associating a selector name
with an offset takes very little storage, and putting these pairs in the type-object gives an extremely
brief way to represent the information. Moreover, we do not need the full generality of functions
for this purpose. Selectors are constant functions that are applied and expanded by the compiler.
Compiled code contains address arithmetic, not function calls.

Most languages permit the same part name to be used in multiple record definitions. Storing
the part name/offset mappings in the type-object is an easy way to implement the required kind
of ambiguity; it allows the same part name to be bound to different offsets in different types. It
is interesting to note that very old C compilers did not work like this. They probably stored the
part names in the symbol table with the function names and other identifiers. The result was that
each part name could only be used to mean one offset. A part name could be used in more than
one struct declaration, but each use had to correspond to the same offset amount! This has been
modernized by the ANSI C standard.

Portability. To define the FORTH selectors we had to know exactly how many bytes would be
required to implement each primitive type. But this varies from machine to machine. Whatever
constants we use for the offsets, they will be wrong for some FORTH implementations.

14.2. COMPOUND TYPES 415

C provides the same access to low-level information as does FORTH, so one could define record
selectors the same way in C. However, this would be foolish, because then the user would have to
worry about inserting padding bytes and accommodating varying sizes for the primitive types. If
the user writes a struct declaration, the compiler takes care of all this.

Semantic Safety. The part selectors defined in FORTH are accompanied by absolutely no check-
ing. If an offset was one too large, the boundary between successive parts would be violated. A
program that tried to access that component would get the last byte(s) of it and the first byte
of the next component! These bytes do not form a valid object of any sort. Moreover, a FORTH
function is not restricted to use with the correct type of argument; any selector could be used on
an entirely inappropriate type of record, producing a garbage answer.

Pathnames

Let us define the term pathname to mean the sequence of identifiers, starting with the name of an
object and continuing with a series of selectors (part names or subscripts). A pathname designates
a particular field, fn, of a particular object, Ob.

When a compiler translates a pathname, it uses the series of selectors to compute the address
of the specified component, or the effective address. Initially, the effective address is set to the
base address, that is, the address of the first location in Ob. The current type-object is set to the
type-object of Ob, and the current selector is set to the first selector in the pathname.

The compiler looks for the current selector in the current type-object. This field has an asso-
ciated type t1, and an offset amount, n1. For records, n1 is listed explicitly in the type-object.
For arrays, n1 is found by multiplying the component size (from the type-object) by the array
index minus the array’s lower bound. The compiler then adds n1 to the effective address, sets the
current type-object to t1, and goes on to the next selector in the pathname. This process is iterated
until all selectors are used, and a final offset amount is calculated. A pathname that contains no
variable subscripts can be processed entirely at compile time. Otherwise, the constant portions of
the computation are done at compile time, and the rest must be deferred until run time.

Partial Pathnames. When part names are simply entered into the symbol table, as they are in
COBOL, PL/1, and old versions of C, the programmer must be careful about using the same part
name in two different record types. We eliminate this problem by storing the record part names in
the type-objects. This makes them into local names, that is, names whose meaning within the type
is quite independent of any other meanings in other contexts. Localizing names makes it easier to
write correct code. However, one “feature” present in older languages was lost by this change.

In PL/1, the programmer could refer to a sub-subfield without specifying a full pathname;
the programmer wrote only the name of the object itself and the name of the sub-subfield. This
kind of short-cut naming can shorten and simplify code, especially where a record type contains a
structured component, and so on, for several levels.

416 CHAPTER 14. THE REPRESENTATION OF TYPES

Pascal has one statement type that partially compensates for this loss of convenience. A “with”
statement allows the programmer to establish a local context, within which the initial portion of a
pathname can be omitted. The form of a with statement is as follows:

with 〈partial pathname〉 do 〈scope〉
When the compiler begins to translate a with statement, it evaluates the effective address,

Ea_pp, for the partial pathname. (If there are variable fields in the pathname, code is generated
to complete this process at run time.) During compilation of the with scope, Ea_pp is the starting
point for computing effective addresses of components, and the current type-object is set to the
type of the last field in the partial pathname. Within the scope, all references to field names defined
for this type are legal and will be interpreted as offsets added to Ea_pp.

At run time, any variable fields in Ea_pp are evaluated once, when control enters the with

block. Within the block, only the “tail” section of each pathname must be specified and evaluated,
saving both execution time and space [Exhibit 14.20].

The principle here is valid and important: when doing several operations with one part of a large
compound object, it is more efficient (in several ways) to mark the beginning of that component
and make local references relative to that mark. Looking at other programming languages, we see
more general ways to solve the same problem.

A C programmer does not need a special statement type to accomplish this; she or he simply
sets a pointer to the desired component (at entry to the block) and makes references within the
block relative to that pointer [Exhibit 14.21]. The with statement is included in Pascal because
C’s simple solution is not available. (Recall that, in Pascal, pointers to stack-allocated variables are
prohibited.) Moreover, the Pascal solution is semantically cleaner because, in C, the pointer is not
constrained to be constant within the local scope.

LISP incorporates what might be called the “right” way to solve the problem. Using “let”, the
programmer can create a new block with a local symbol and bind that symbol to any object. (The
programmer would bind the new symbol to a pointer to the Ea_pp.) C-style references relative to
this pointer could then be used within the local scope.

Records Are Much Like Arrays

There are many similarities between records and arrays; both are compound types with a series of
parts, accessed by selector functions. Their type-objects contain similar information, except that
an array type-object is simpler because all fields of an array are the same size and type. Where
an array type-object contains one piece of information about a component, a record type-object
contains a list.

However, the familiar syntax for subscript (with parentheses or brackets) is markedly different
from the syntax for record part selection (with a dot). This is partly an accident of history; neither
subscript notation nor dot notation is engraved in stone. A language designer could choose to use
either syntax, as shown in Exhibit 14.22.

There is a more important difference between arrays and records than the syntax used for part
selection. That is the fact that the traditional array selectors are numeric and record selectors are

14.2. COMPOUND TYPES 417

Exhibit 14.20. Partial pathnames using with in Pascal.

With is used here to simplify the source code and reduce execution time for access to one part of a
complex data structure, a stack of student records. When the with block is entered, the effective
address of the top student on the stack is calculated. All references to the field names defined for
StudentType will be interpreted relative to this address.

Type NameType = packed array[1..20] of char;

StudentType = record LastName, FirstName: NameType;

Sex: char;

Id: integer

end;

ClassType = record { A class is a stack of students. }

Top: integer;

Member: array[1..50] of StudentType;

end;

Var N: Integer;

CS101: ClassType;

Stu: StudentType;

...

With CS101.Member[CS101.Top] Do Begin

Writeln(Id, FirstName, LastName);

If Sex=’F’ Then FemaleTotal := FemaleTotal + 1

Else MaleTotal := MaleTotal + 1

End;

not. Let us consider the twin questions:

1. Why don’t we use symbolic names to select array components?

2. Why don’t we use integers to select record components?

The essence of an array is that its components are semantically uniform. They represent objects
from the same domain, and we expect to apply the same operations to each, in turn. The number
of array elements and position of a particular element in the array is of secondary importance, at
most. Because these elements have uniform meaning to the programmer, a uniform way to name
them is needed Giving them numbers is a good solution. Giving individual names to a series of
similar objects would be silly.

In contrast, the components of a record are not semantically uniform. They represent different
aspects of the same object, not separate objects. Even when components are the same type, they

418 CHAPTER 14. THE REPRESENTATION OF TYPES

Exhibit 14.21. Using a pointer in C to emulate “with”.

typedef struct {

char last_name[20], first_name[20];

char sex;

int id;

} student_type;

typedef struct {

int top;

student_type member[50];

} class_type; /* A class is a stack of students. */

...

{ int female_total, male_total;

class_type cs101;

student_type *stu;

...

stu = &cs101.member[cs101.top];

printf("%d %s %s\n", stu->id, stu->first_name, stu->last_name);

if(stu->sex==’F’) ++female_total; else ++male_total;

...

}

Exhibit 14.22. Alternative syntax for part selection.

Let Student be a StudentType, as declared in Exhibit 14.20, and let Class be an array of
StudentType. There could be many clear and unambiguous ways to denote part selection. A few
possibilities are listed here.

Array Selection Record Selection

Traditional syntax Class[5] Student.FirstName
Possible syntax Class.5 Student[FirstName]
Uniform syntax Class@5 Student@FirstName
Functional syntax Subscript(Class,5) Select (Student, ‘FirstName’)

14.2. COMPOUND TYPES 419

represent different concepts and can easily be given different names. Defining symbolic names for
record components is, therefore, natural and functional.

However, constant numeric selectors could be used for records. Allowing numeric (as well as
symbolic) selection could have some advantages, especially for writing library or utility routines.
Variable numeric selectors cannot be used in a strongly typed compiled language because the type
of the result of every expression must be determined at compile time. Suppose R is a record variable
with five components. Then a compiler can determine the type of R[3] by looking at the third entry
in the list of component types in the type-object for R. But a compiler cannot know the type of
R[i], where i is a variable; it could be any one of the component types of the record. Thus a variable
can’t be used to select a record part in a statically type-checked language.

Some languages are interpreted, not compiled. These languages eliminate the restriction that
the type of the result of an expression must be known ahead of time. If such a language also
permitted the programmer to use the information in a record’s type-object, some very useful and
powerful routines could be written. For example, we could write a general debugging package with
a routine that could print out and label the components of any record. Such a routine would use
the type-object to find out how many components were in the record, then execute a loop that
used the field name and field type information in the type-object to print out the record’s value.

This kind of code is polymorphic, that is, the type of a function argument is tested at run time
in order to know how to execute the function.8

14.2.5 Union Types

Two kinds of types are called unions because the semantics of a given storage object can vary. There
are actually two kinds of unions, with very different semantic properties, known as free unions and
discriminated unions.

A free union is a semantically unsound type. An object of a free union type has two or more
possible semantic interpretations, and there is no field, either in the object itself or in its associated
type-object, that defines which set of semantics is currently valid. A free union type declaration
is not a way to build a compound type out of simpler types. Rather, it is a way to create objects
with ambiguous semantics. A free union type-object is shown in Exhibit 14.23. Its form is like
the type-object for a record. Its semantics differ from a record in that only enough space for the
longest field is allocated, and all fields have an offset of 0 bytes (the offsets, therefore, do not need
to be part of the type-object.) Many languages, including Pascal and C, support free union types.
These will be dealt with fully in Chapter 15, Section 15.7, after the discussion of type checking.

A discriminated union is, in theory9, a semantically sound type, because the alternative se-
mantic interpretations are controlled by a field that contains a case specifier. The general form
of a discriminated union is: Common part—key—set of variant parts. The Pascal variant record

declaration is an example of a discriminated union type constructor. It defines a record type with
three sections: an initial section with fields that are common to all variants, a tag field that is a

8We will cover polymorphic code in Chapter 17.
9We say “in theory” because the implementation in Pascal is faulty and semantically unsafe.

420 CHAPTER 14. THE REPRESENTATION OF TYPES

Exhibit 14.23. A type-object for a free union type.

typedef union{double dd; int kk; char *str} strange_type;
type name

total size
number of variants
field names
types of variants

nondiscriminated
 union type

strange_type

double
int

char*

8 bytes
3 variants
dd, kk, strnondiscriminated

 union type

Exhibit 14.24. A type-object for a discriminated union type.

A discriminated union type has two parts. The first part is essentially an ordinary record ending
with the discriminant field; the second part is a free union. This is an appropriate type-object for
the type declared in Exhibit 14.25.

total size
number of variants
field names
types of variants

nondiscriminated
 union type

Boolean Integer null

nondiscriminated
 union type

2 bytes
3 variants
Bearded, Children, null

type name

discriminated
 union type

total size
number of nonvariant fields
field offsets
nonvariant field names
component types

Person
10 bytes
2 nonvariant fields
0, 6, 8
born, sex

date
gender

discriminated
 union type

14.2. COMPOUND TYPES 421

Exhibit 14.25. The discriminated variant record in Ada.

type Gender is (Male, Female, Unknown);

type Person(Sex:Gender:=Unknown) is

record

Born: Date;

case Sex is

when Male => Bearded: Boolean;

when Female => Children: Integer;

when Unknown => null;

end case;

end record;

Sam: Person; -- A variable of type Person.

code for the variant currently stored in the variable, and a set of variant parts, each having any
number of unrelated parts [Exhibit 14.24]. The clear intent of variant types is to conserve storage
by permitting mutually exclusive information fields to occupy the same positions in the record.
This reduces the total amount of storage needed for variant objects to the amount needed for the
longest variant. We can say that the variant fields share storage.

If storage is plentiful, there is no need for this type of type. The same semantics can be achieved
by using an ordinary record which contains all possible fields and a tag field to say which subset
of the fields is currently meaningful. Storage for all fields would then exist all the time, and some
subset would contain meaningless garbage.

There are some curious, perhaps faulty, aspects of Pascal’s variant records. The tag field controls
which set of field names is defined at any given time and should always correspond to the information
actually stored in the record. To assign a value to a variant record, the variant tag must be stored
first. This causes the corresponding field names to “become defined”. However, nothing forces a
programmer to finish the job. A value of one variant type, with its tag, could be stored in the
variable. Then the tag could be changed. At this point, the tag label does not match the contents
of the variable, and if the variable is used, the bits will be given an invalid interpretation! The
rules of Pascal allow this to happen, and thus the variant record is a gaping hole in Pascal’s type
system.

Ada also supports discriminated variant records that are similar to Pascal’s, but with an im-
portant difference that corrects the loophole in Pascal’s semantic rules. Assignment is restricted
so that a variant storage object can never contain a case specifier for one variant and a value of
another.

In Exhibit 14.25, we declare a discriminated union type with one common field (Born), a
discriminant named “Sex” whose default value is “Unknown”, and three sets of variant fields, labeled

422 CHAPTER 14. THE REPRESENTATION OF TYPES

Exhibit 14.26. Legal and illegal uses of a discriminated variant record.

Sam := (Male, (1970,Jan,3), FALSE); -- This is ok.

Sam.Sex := Female; -- Prohibited.

Sam.Children := 2; -- Undefined, Sam is Male.

by the elements of type Gender. We may construct a value of type Person by supplying a list of
relevant data items, thus:

(Male, (1970,Jan,3), FALSE)

We may assign such a value to a Person variable. But we may not assign values to the tag
field or the variant field independently, These rules forcibly maintain the consistency between the
tag field and the information stored. Let Sam be a variable of type Person. Then the whole-record
assignment on the first line of Exhibit 14.26 is permitted, but the partial-record assignment on
the second line is not. The third assignment is not permitted because the field name Children is
not defined for objects with the tag Male. These constraints in Ada close the loopholes present in
Pascal.

14.3 Operations on Compound Objects

14.3.1 Creating Program Objects: Value Constructors

A program object of a primitive type is created initially by executing a function or by writing a literal
in a program. For example, the result of performing an addition operation is a program object.
Arithmetic expressions and most functions create program objects as their results. (Sometimes
these program objects are references). These values are kept on a run-time stack.

Programming language conventions have developed to allow the writing of literal values of all
the primitive types. Most languages have distinguishable syntactic forms for types real, integer,
and character, and sometimes for Boolean. Additional primitive types, such as short integer,
packed decimal, and byte, are sometimes supported. Sometimes the same program object may be
denoted by more than one literal expression. For example, C lets the programmer write an octal,
hexadecimal, or decimal literal to denote an integer value.

A language that permits a programmer to define new types should provide some way to write
literals for these types. Pascal does not do this; the programmer cannot, therefore, define a constant
of a user-defined type. C permits such a literal value to be written as an initializer, in a declaration,
but not in any other context. This is a wholly unnecessary restriction.

A language could include a constructor function which we will call “MAKE” to solve this problem.
The first argument of MAKE is a type. Following this is a variable number of literals or expressions
appropriate in number and composition for program objects of the specified type [Exhibit 14.27].
MAKE takes the separate pure values in this list, bundles them into an object of the given type, and

14.3. OPERATIONS ON COMPOUND OBJECTS 423

Exhibit 14.27. Making a record object from its components.

Assume that the type complex-pair has been defined as a record containing real and imaginary
components, and that imaginary numbers are made out of reals. Then a complex-pair would be
constructed by executing the following:

MAKE(complex-pair, 0.0, MAKE(imag, 5.6));

returns this value as its result. It is important to note that this result should be a coherent object,
temporarily residing on the run-time stack. It can, therefore, be dealt with or manipulated as a
whole even if it is a record or an array.

Another possible approach with the same semantics but slightly different syntax was used
in Ada. Each defined type name becomes a constructor function automatically. To construct a
program object of the new type, the new type name is written preceding the appropriate series of
components, listed in parentheses [Exhibit 14.28].

14.3.2 The Interaction of Dereferencing, Constructors, and Selectors

Dereferencing maps a reference into a program object, or value. This reference/value relation-
ship is complicated by the introduction of compound data-objects (arrays and records), selection
functions, and constructors. A selection function takes, as parameters, a compound object and a
part specification. It returns a reference to the specified part of the compound [Exhibit 14.29]. A
constructor combines a set of components into a single compound object.

The selection functions in many familiar languages (e.g., FORTRAN and Pascal) take references
to compound objects as parameters and return references to simple objects as results. The simple
reference is then dereferenced if the context requires. Simple selection functions are combined to
build the essential accessing functions for abstract data types such as stack in Exhibit 14.30.

A constructor creates a compound program object from a set of pure values on the run-time

Exhibit 14.28. Making a record object from its components in Ada.

type imag is new float; -- Floats will be used to represent type imag.

type complex_pair is -- A complex pair is a float and an imag.

record rp: float;

ip: imag

end record;

complex_pair(0.0, imag(5.6)) -- Make an float into an imag, then

-- use it with another float to make

-- a complex pair.

424 CHAPTER 14. THE REPRESENTATION OF TYPES

Exhibit 14.29. Pascal selection functions.

In Pascal, the part names associated with record types are selection functions. We define these
functions when we make a type declaration. The following declaration creates two new selection
functions, named top (line a) and store (line b).

Subscript is a selection function that is predefined for all arrays, but depends on the declared
array bounds. Line b defines the legal range of subscripts for the store component of a stack,
and fully determines the meaning of subscript on this kind of object.

TYPE stack = RECORD

top: integer; {a}

store: array [1..100] of StackItem {b}

END;

Exhibit 14.30. Using selection functions in Pascal.

We combine the selection functions subscript, top, and store to build a “pop” function for a
stack.

a. The parameter to the pop function is the address of the beginning of a stack storage object.
(The keyword VAR indicates that a Pascal parameter is a reference.)

b. All three selection functions are composed, to arrive at the address of the element at the “top” of
the stack. This address is dereferenced because it appears on the right side of an assignment.
This yields a program object which is later returned by the function.

c. A different stack component, the top-of-stack index, is then selected twice. The right-hand
occurrence is dereferenced and decremented. The resulting value is stored in the address
given on the left (the same location), modifying the value of the compound object.

FUNCTION pop(VAR S:stack):StackItem; {a}

BEGIN

pop := S.store[S.top]; {b}

S.top := S.top - 1 {c}

END;

14.3. OPERATIONS ON COMPOUND OBJECTS 425

Exhibit 14.31. Value constructors in APL.

• Using a literal or a variable name causes the corresponding value to be placed on the stack.

• Assume N is bound to a numeric value; it will be automatically dereferenced and placed on
the stack between the other two numbers.

• We use the concatenate operator, comma, to construct a one-dimensional numeric array, or
vector, from the three simple values on the stack.

2, N, 5.1

stack. It can leave the resulting compound object on the stack or allocate a variable of the correct
shape and initialize it to the given set of pure values. We call the former a value constructor and
the latter a reference constructor.

Several languages give partial support to value constructors; for example, C permits them in
initializing expressions and Ada supports a similar notation for compound literal expressions. APL,
however, is one of the few languages that supports explicit, run-time value construction with no
restrictions. Use of APL’s value constructor, comma, is shown in Exhibit 14.31. The reshape
function, ρ, is a combined type cast and constructor; its use is illustrated in Exhibit 14.35.

Reference construction implies dynamic allocation and the use of pointers. It is not supported
at all in many common languages, but it has a basic and central importance in LISP. The LISP
“cons” function is a reference constructor which allocates a new cell and initializes it to the two
arguments on the stack.

The possible relationships among references, program objects, compound objects, and their
components are captured in Exhibit 14.32. Each arrow represents a type of function, pointing from

Exhibit 14.32. Selection and dereferencing.

Simple
Program Object

Compound
Program Object

Compound
Reference

 Simple
Reference

 Selection +
Dereference

Reference
Selector

 Value
Constructor

Simple Dereference

Compound Dereference

Allocation,
Construction
+ Initialization

Value
Selector

Reference
Constructor

426 CHAPTER 14. THE REPRESENTATION OF TYPES

Exhibit 14.33. Pascal selection and dereferencing.

Simple
Program Object

Compound
Program Object

Compound
Reference

 Simple
Reference

Part of array or
record as a
VAR parameter
or on left side
of an assignment.

(d) Call-by-value with array or record.
Assignment with array or record.
Comparison for = with record.

(c)
Part of array or record in any
 other context.

Call-by-value with simple variable.
Simple variable in an expression.

(b)

(a)

the type of its argument to the type of its result. Thus the arrow for “value selector” starts at
“compound program object” and ends at “simple program object”, and the arrow for “reference
constructor” starts at “simple program object” and goes to “compound reference”. No arrow in
the graph leads from a collection of simple references to a compound reference. This is because
programs deal with real storage. Whereas compound storage objects must occupy contiguous
blocks of memory, a set of individual storage locations normally are not allocated contiguously
and, therefore, cannot be combined directly into a coherent compound object.

Selection and Compound Objects in Pascal. Most languages do not support all of these kinds
of selection and dereferencing functions. Pascal incorporates a limited subset of these possible
function types as diagrammed in Exhibit 14.33. Moreover, Pascal only supports some of these
function types in a highly restricted fashion. (The letters in the diagram key it to the following
explanation of these restrictions.)

a: Reference selectors. Like most common languages, Pascal provides selection functions that
return references when used on the left side of an assignment statement. This permits a single
part of a compound storage object to be changed without manipulating the entire compound.
Subscripting an array (or selection of one field of a record) returns a reference to the selected
part.

b: Simple dereference. Dereferencing is automatic when a reference appears to the right of an
“:=”, or in an expression, or as an actual argument corresponding to a value parameter.

c: Selection with dereference. The result of a subscript or selection operation is a simple ref-
erence. Like any reference, this is automatically dereferenced unless it is on the left side
of an assignment operator or is used as an argument to a function with a VAR parameter.
Thus a reference to part of an object cannot be obtained and stored or manipulated by the
programmer.

14.3. OPERATIONS ON COMPOUND OBJECTS 427

d: Compound dereference. Any Pascal variable, even a compound variable, may be passed as a
value parameter. This causes the variable to be dereferenced. Otherwise, Pascal’s support for
compound dereference is severely restricted. Record variables will be dereferenced when they
are compared for equality, or when the value of one record variable is copied into another.
Array variables can be copied but not compared.

Pascal does not support the other three kinds of functions at all. It provides dynamic storage
allocation and pointers, but not reference constructors. A series of separate operations is required
to allocate a new compound storage object and initialize its fields. Nothing like the LISP cons is
supported.

Value constructors are not supported at all in Pascal, not even those which construct compound
literal values as in Ada and C. A compound value can only be constructed by storing its components,
one at a time, into a compound storage object. Compound values may not even be returned from
functions in the standard language.

With no value constructors, value selectors are not needed. All compound values are created,
piece by piece, by storing components in a compound variable. Reference selection may then be
used to decompose the value, if needed.

Selection and Compound Objects in APL. The power of APL comes from its generalized
ability to manipulate compound program objects. Here we will look at the selectors and constructors
in APL and note how they differ from those in most languages.

Many APL operations, including the selection functions, can result in compound pure values
being left on the stack for further processing by other operators. All the selection operators can
be used as value selectors, to select some portion of a compound value that was just computed. A
complex expression might perform several computation steps, each time creating, on the stack, an
answer of a new size or new number of dimensions. This is in stark contrast to Pascal, where every
compound value must be created by a series of assignments, and the size and shape of every result
must be known at compile time.

APL Selectors. In FORTRAN, C, and Pascal, selection functions operate only on variables.
The question of selecting a part of a compound program object never occurs because these languages
do not support either literals of compound types or functions that return objects of compound types.
In contrast, APL supports compound program objects and selection functions on both variables
and program objects, and APL incorporates a much more extensive and less restricted subset of
the possible function types from Exhibit 14.32.

APL compounds are limited to arrays (records do not exist in APL), but the programmer can do
many more things with arrays than in Pascal [Exhibit 14.34]. APL gives full support to compound
dereferencing (arrow d), value selectors (arrow e), and value constructors (arrow f).

Simple dereferencing (arrow b) works similarly in Pascal and APL; anything on the right side
of an assignment arrow, and any variable name in any other kind of expression, is automatically
dereferenced. Both languages prohibit storing and calculating with a reference to part of an object.

428 CHAPTER 14. THE REPRESENTATION OF TYPES

Exhibit 14.34. APL selection and dereferencing.

Use of subscript on left side
of an assignment.

Compound
Program Object

Compound
Reference

 Simple
Reference

Subscript, selection, etc. in expression
 or on right side of assignment

Use of simple variable name in an
expression or on right of assignment.

Use of array name in expression
or on right of assignment.

(a)

(b)

(c)

(d)

Simple
Program Object

catenate
 iota
 rho

subscript,
selection,
compression,
etc.

(e)(f)

Compound dereferencing (arrow d), though, is much less restricted in APL than in Pascal. Com-
pound variables, like simple variables, can be used in most expressions. Using a compound variable
name as an operand causes compound dereferencing and leaves a compound object on the stack.

APL is like Pascal where reference selection (arrow a) is concerned. Selection results in a
reference in APL only when subscripts are used to the left of an assignment arrow; selection is
followed by dereferencing (arrow c) for all other uses of subscripts. Unlike Pascal, though, APL lets
the programmer write a subscript expression that denotes any subset of the rows and columns of a
matrix. All of these locations will be selected and receive assignments or be dereferenced [Exhibit
14.36].

Unlike Pascal, subscript is not the only selection function that operates on arrays; there are
several selection operators that take an array or matrix operand and an operand that specifies
which part of the array is to be selected, and compute a new array of a different shape. These are
listed in Exhibit 14.37.

Exhibit 14.35. Constructing matrices in APL.

These lines create two literal matrices and bind them to the identifiers M1 and M2. Diagrams of
these matrices are shown below.

M1 ← 3 5 ρ 11 12 13 14 15 21 22 23 24 25 31 32 33 34 35

M2 ← 4 4 ρ 0

M1: 11 12 13 14 15 M2: 0 0 0 0
21 22 23 24 25 0 0 0 0
31 32 33 34 35 0 0 0 0

0 0 0 0

14.3. OPERATIONS ON COMPOUND OBJECTS 429

Exhibit 14.36. Selecting a submatrix in APL.

Reference selection and two operators that perform value selection are illustrated below. These
operations use the matrix values M1 and M2 created in Exhibit 14.35. The first line selects two
characters, "no", from the string "random" and binds the resulting value to M3. The second line
selects six values from M1 (rows 1 and 3, columns 2, 4, and 5) and assigns them to six selected
locations in M2 (rows 1 and 4, columns 1, 2, and 3). The result is diagrammed.

M3 ← 0 0 1 0 1 0 / "random"

M2[1 4; 1 2 3] ← M1[1 3; 2 4 5]

Result of value selection: 12 14 15
32 34 35

Result of reference selection
and assignment of a compound

value to parts of M2: 12 14 15 0
0 0 0 0
0 0 0 0

32 34 35 0

Exhibit 14.37. APL selection functions.

We give the most basic meaning of APL’s selector functions. The “/” has additional meanings
when used in other contexts.

Symbol Name Semantics

N ↑ V take Select N values from V and include them in the answer. If N
is positive, take the first N values; if N is negative, take the
last N.

N ↓ V drop Eliminate N values from V and include the rest of V in the
answer. If N is positive, drop the first N values; if N is nega-
tive, drop the last N.

V1 / V2 select The two array operands must have the same length, and the
value in each position of V1 should be a positive integer, N.
Then N copies of the value in the corresponding position of
V2 will be selected and included in the result.

[...] subscript Works for matrices of any number of dimensions. An array
element is selected if all of its indices (row, column, etc.) are
included in the subscript list.

430 CHAPTER 14. THE REPRESENTATION OF TYPES

Exhibit 14.38. Using value constructors in APL.

We give the most basic meaning of APL’s three constructors. All three symbols have additional
meanings when used in other contexts.

Symbol Name Semantics

ι N iota Create an array value consisting of the numbers 1 through N.
A1 , A2 catenate If A1 and A2 are arrays, form a new array value by concate-

nating the elements of A1 and A2.
D ρ A reshape D is an array of dimensions, and A is an array of values.

Form a new matrix, whose shape is specified by D, containing
the values in A. If there are too few values in A, use them
cyclically until the new matrix is filled up.

APL Constructors. A value constructor takes two or more values, on the stack, and combines
them into a compound value, which it leaves on the stack. APL relies everywhere on value construc-
tors. All APL operators, when given compound arguments, can construct compound values as their
results. An array literal is denoted simply by writing a series of simple literal numbers (without
any delimiters or punctuation) and an array may be input by typing a similar series of numbers. In
addition, there are two operators whose sole purpose is to construct array values [Exhibit 14.38],
and one operator that can be used to “cast” a one-dimensional array into any multidimensional
shape.

Because APL supports compound selectors, compound dereferencing, and value constructors in
very general ways, compound objects can be processed as easily as simple objects. APL combines
these unusual and powerful data-handling facilities with implicit iteration10. The result is that
many algorithms can be written succinctly or as “one liners” in APL that would require several
lines of code and explicit loops in most other languages.

14.4 Operations on Types

Often a systems programmer wants to design and write library functions or general implementations
of common, useful algorithms. He or she is faced with a type-declaration dilemma:

• The actual size and structure of an argument must generally be known to process that struc-
ture correctly.

• But a generally applicable program should be usable for many variations of a data structure.
For example, a package of stack functions should work on stacks implemented by arrays of
any length or base type.

10Chapter 10.4

14.4. OPERATIONS ON TYPES 431

Exhibit 14.39. The lone type operation in C.

Assume that T1 is a defined type name. Line (a) declares two pointers of type T1*, or pointer-
to-T1. Line (b) allocates one storage object large enough to hold a value of type T1. The result of
malloc must be explicitly cast to type T1* before it stored in the pointer variable, pt1. Line (c)
allocates an array of n such objects and stores the reference in pt2.

T1 *pt1, *pt2; /* a */

pt1 = (T1*)(malloc(sizeof T1)); /* b */

pt2 = (T1*)(calloc(n, sizeof T1)); /* c */

Binding time becomes a problem in a compiled language. Data types for all objects must be
bound (fully specified and fixed) before code can be compiled; allocation and selection functions
depend on this information. In Ada the binding time problem is solved by putting the library code
in a generic package, which is a code schema with one or more type-parameters. To use such a
package you first instantiate the package with particular type-arguments. This binds the types and
creates fully specified code which can then be compiled normally.

But there is still a problem. Code often depends on some particular property of a type, such
as the size of objects of that type or the number of elements in an array. The code in the body of
a generic package needs to have access to this kind of information about the type-arguments used
in the instantiation process. Even when we write library functions for an interpreted language, we
need type predicates that can test the types of arguments and conditionally execute the appropriate
code.

Type-objects provide a clean solution to these problems. They are objects and can be passed
as arguments, just like data objects. A pointer to a type-object serves as a unique identifier for the
type, providing an easy implementation for a type-predicate. A type-object has a body that stores
specific information about the properties of objects of that type. To find the attributes of a type,
we need the ability to access the information stored in its type-object. Thus we need selectors for

the type-objects.
The actual selectors that are meaningful for a type-object depend, obviously, on the type of the

type. The type pointer in a type-object provides a way to find out what selectors are appropriate.
Finally, the language definition must list the selector functions that maybe used for each type of
type.

C provides us with one example of a type operation. The sizeof operator in C may be applied
to any type or any object. It accesses the type-object and returns the value of the “size” field.
The sizeof operator is necessary in C to provide program portability. It is most commonly
used in conjunction with the dynamic allocation functions, malloc and calloc, which require
the programmer to tell the allocator how many bytes to allocate [Exhibit 14.39]. Since the size of
any structure can vary from machine to machine, an operator was provided that would return the
size of a type in the current implementation.

432 CHAPTER 14. THE REPRESENTATION OF TYPES

Exhibit 14.40. Some of the type operations supported by Ada.

Attribute Meaning

For any type:
’storage_size Total number of storage units needed
’size Number of bits needed for type or allocated for object

For integer types, subranges, and enumerated types:
’first Minimum value in the type
’last Maximum value in the type

For floating point types:
’digits Number of decimals in mantissa of representation
’emax Largest exponent value
’epsilon Difference between two successive representable values
’large Largest positive value

For array types:
’first(N) Lower bound for Nth index position
’last(N) Upper bound for Nth index position

Ada supports generic packages and, therefore, must provide a variety of type-selectors. These
are referred to as attributes, and they give a package access to many kinds of important information.
Some, but by no means all, of these attributes are listed in Exhibit 14.40. The first one is the analog
of C’s sizeof. The last selectors listed apply to any array type and return the bounds of the Nth
dimension. These type-selectors let the library programmer write code that can process any type
array.

Many of these attribute selectors define the limits inherent in an implementation of the ba-
sic types. Note the similarity between the third selector, ’last, and Pascal’s implementation-
dependent constant maxint. The type-objects for the basic types in Ada are more complex than
those we diagrammed, since they must also contain the limit information. The ability to get this
kind of information about an implementation can be an important ingredient in writing reliable,
portable code.

Exercises

1. What is the difference between a primitive and a programmer-defined type?

2. What is a type object? What are its components?

3. The process of type-checking in Pascal is very simple and fast, even if the types being compared
are complex and nested. Explain. How is this related to type objects?

14.4. OPERATIONS ON TYPES 433

4. What is a type constant? Why is it used?

5. What is a pointer type? What information is necessary to represent a pointer type? Explain
two ways that this information might be used by the compiler.

6. What is a compound type?

7. What information is necessary to represent an array type?

8. What is an index type? What is its role in an array?

9. How is an effective address computed for a one-dimensional array?

10. How was the implementation of multidimensional arrays simplified in the late 1960’s?

11. What is a slice of an array?

12. Compare the highly flexible arrays in APL and the much more restricted ones in Pascal.
Comment on: selection functions, coherent operations, use as parameters, and returning
arrays as function results.

13. What is bounds checking? What is the advantage of having it in a language? The disadvan-
tage?

14. What is a string? A counted string? A terminated string?

15. What is the difference in representation between a C string and a Pascal string?

16. Why was the set type included in Pascal?

17. What are the similarities between an array and a record?

18. What are the differences between an array and a record? Explain why a representation of a
record type is more complex than a representation of an array type.

19. Explain why the fields of a record cannot be accessed by subscript (like elements of an array)
in a strongly typed language.

20. How can a record component be accessed?

21. What is a pathname?

22. What is the difference between a free union and a discriminated union?

23. How has Ada closed the loophole found in Pascal’s variant record?

24. How are literal objects of primitive types created in a program?

434 CHAPTER 14. THE REPRESENTATION OF TYPES

25. How are literal objects of user-defined types created in Pascal? C?

26. What is a selection function? What does it return?

27. How does a value constructor create a compound object?

28. Why is binding time a problem in compiled languages?

29. How can we find the attributes of a type?

30. Give an example of a type operation in C and Ada.

Chapter 15

The Semantics of Types

Overview
In this chapter we explore the semantics of types. In addition to describing physical
properties of objects, types can be used to define the domain of a function and thereby
control its application. There are several different approaches to domains and domain
or type checking.

We consider the use of types and the development of type checking from the earliest
languages to modern strongly-typed languages. Types are properties of data objects
and they describe data size, structure, and encoding. Types may also be associated
with identifiers to restrict the domain of objects to which an identifier may be bound.
Type restrictions can be enforced at compile time or at run time.

In early languages, types were used primarily for storage allocation, storage access, and
to control application of predefined functions. Two types were considered compatible
if they described the same storage format. This definition of compatibility became
inadequate when newer languages began using types to carry semantic information.
The translators for the newer strongly-typed languages use domain or type checking to
ensure the semantic validity of function calls. A major research problem has been to
find semantically meaningful extensions of the type compatibility rules.

A distinction is made between external domains, those within a programmer’s applica-
tion area, and internal domains, the semantic groupings of objects or types identified by
the language translator. While older languages had a fixed number of distinct domains,
type constructors in modern languages permit programmer-defined domains.

Type casts cause a change in the semantics of an object—the domain label is changed,
but the bits are not. A conversion is a change in the physical properties of an object—

435

436 CHAPTER 15. THE SEMANTICS OF TYPES

size, encoding, or reference level. A coercion is a conversion or cast that is automatically
invoked by the translator.

While type checking aids the programmer, it creates an inflexible environment. A
programmer who needs to convert from integer to floating point or to compute a hash
index, for example, would be hampered by strong type checking. Modern languages
often provide escape hatches so that the experienced programmer can evade the type
matching rules.

15.1 Semantic Description

Types can be used to embody both the physical properties and the semantic properties of objects.
In Chapter 5, we explored the use of types to describe physical properties. In this chapter we
look at the other use of types: to define the domain of a function and thereby to control function
applicability. A domain is the set of objects over which a function is defined. Objects in this set
must share common physical properties (size, structure) and semantic properties (encoding, intent).

Functions defined for a domain depend on the common properties of its elements. If the size
or structure of a function parameter differed from what the function expected, the results of the
computation would probably be wrong. Similarly you would get nonsense if the meaning of an
actual parameter was different from the meaning of objects for which the function was designed.
Data type definitions were developed as a way to specify the size and structure of variables, so that
translators could allocate appropriate amounts of storage. Type checking is a way the translator
can use the same information to help the programmer eliminate errors and inconsistencies in code.

Checking was minimal in early languages, but it has become more sophisticated through the
years. In this section we look briefly at several different approaches to domains and domain checking.
We consider the typing rules in a series of languages, from very old to fairly new.

15.1.1 Domains in Early Languages

Assemblers, the earliest computer languages, had implicit domains rather than explicit domains:
addresses, integers, indices, and the like [Exhibit 15.1]. The programmer used elements of these
domains, but their properties and relationships were part of the programming lore, not part of
the language. All assembly language objects were represented by storage locations (or blocks of
locations), each location big enough to store an integer. The type of the object (integer, address,
or index) was not part of the program—it existed only in the programmer’s mind. Computers
typically had some instructions intended to do useful things on each domain. However, the language
translator had no way of knowing whether a variable represented a true integer, an address, or an
index. Thus the translator could not ensure meaningful use of instructions. Some higher-level

15.1. SEMANTIC DESCRIPTION 437

Exhibit 15.1. Operations defined for assembly language domains.

Domain Name Operations Defined

machine address Goto, fetch a value, store a value.
integer Arithmetic and comparison operations.
index Load index register, add to base address of an array.

languages, such as FORTH, also use a single domain to represent integers, addresses, and indices,
and provide no way to ensure their appropriate use.

Early Typed Languages. Languages designed in the 1950s, such as FORTRAN and ALGOL,
embodied fixed sets of primitive, or predefined, domains. The language and the translator made
distinctions among these domains. The domain of each variable was defined (by default in FOR-
TRAN, by declaration in ALGOL) and became permanently associated with the variable identifier.

The original FORTRAN was a very primitive language. It did not have variable declarations;
the type of a variable was derived by default from the first letter of its name. Names were restricted
to six letters; this is so short that meaningful names were hard to devise. The domains “integer”
and “real” were supported as unrelated numeric types that could not be used in combination.

The ALGOL domain structure was much richer than FORTRAN. Integers and reals became
related domains [Exhibit 15.2]. Automatic type conversions were introduced so that values of either
numeric type could be mixed in arithmetic statements. The external domain “real” was commonly
represented internally by single machine words in floating-point encoding.1 Integers were also
commonly represented as single machine words in binary sign and magnitude encoding. With this
representation, the internal domain “integer” is not a strict subset of the internal domain “floating
point”. Some numbers can be represented exactly both ways, some cannot. Very large integers
have too many digits of accuracy and can only be approximated in floating-point representation.
Nonintegral floating-point numbers can only be approximated in integer representation.

ALGOL introduced Boolean as a distinct domain. Boolean values were produced by comparison
operators and used by conditional statements. All variables were declared, and the declaration
was used for both allocation and type checking. ALGOL had too many primitive types to make
FORTRAN-style defaults useful.

15.1.2 Domains in “Typeless” Languages

Some languages, which are called dynamically typed languages2, support dynamic allocation of
storage objects whenever they are needed to contain an input value or the result of a computation.3

Identifiers are typeless in the sense that types are not permanently attached to them. Rather, a

1These were 36 bits long on the IBM 704.
2The less precise term typeless languages has also been used.
3These languages are usually interpreted, not compiled.

438 CHAPTER 15. THE SEMANTICS OF TYPES

Exhibit 15.2. Domain relationships in ALGOL.

Unrelated. The domains “Boolean” and “integer” were independent. No relationship existed
between integer values and Boolean values.

Intersection. The external domain “integer” is a subset of the external domain “real”; all integers
are reals, and some reals are integers. However, in a typical 4-byte implementation, the domains
integer and real intersect, but neither is a subset of the other.

Numbers Not Exactly Representable as Integers
5,000,000,000 Larger than maximum 4-byte integer.

3.25 Has a fractional part.

Numbers Exactly Representable as Integer and Float
2,147,481,880 No bits in low-order byte of this integer.

3 No bits in high-order byte of this integer.

Number Not Exactly Representable as a Float
2,101,111,111 Integer has “1” bits in both high-and low-order bytes.

Number Exactly Representable as Neither
1/3 Has fractional part that is infinite when expressed in binary.

type tag is attached to each storage object when it is created. The storage object is then bound
dynamically to an identifier. Thus the type that is indirectly associated with an identifier may
change dynamically. Examples of such languages are LISP, APL, and SNOBOL.

In these languages, the programmer does not declare types for variables and function parameters.
However, all those variables have types, which are necessary to describe the data size, structure,
and encoding. These languages all incorporate the various data encodings supported by typical
computer instruction sets (character, integer, floating point, bitstring). Further, the domain of an
object is usually tested, at run time, before a primitive operation is applied to it. Exhibit 15.3 gives
examples of domain-checking in APL, a dynamically typed language. A run-time error comment is
generated if the domain is not appropriate.

Types are not used to control function applicability in these languages. Any programmer-defined

function can be applied to any object. The language does not support the concept that a function
might be meaningful for some arguments but not for others. However, even though the domains of
arguments to programmer-defined functions are not checked, many (but not all) semantic errors are
detected when the program eventually calls a primitive operation with an inappropriate parameter.

In Exhibit 15.4 we define a simple APL function named DEMO that accepts a parameter, S, passed
by value. At function exit, the value of R will be returned as the value of the function. Meaningful
and meaningless calls on DEMO (and their results) are shown in Exhibit 15.5. The domain mismatch

15.1. SEMANTIC DESCRIPTION 439

Exhibit 15.3. Domains are checked by APL primitive operators.

The domain of an argument is checked by primitive operators. Use of an operand belonging to the
wrong domain results in an error comment.

Programmer writes APL’s output Note below

A ← 2.11 34.2 17 18.1 (a)
2← A [3] 17 (b)
2← A [′N ′] Domain Error (c)

a. An array of four numbers is created and bound to the variable A.

b. “2 ←” means to output the value of the expression on the right side of the arrow. The value
of the third element of the array A is selected and printed.

c. A subscript in APL must belong to the domain “integer”. A character may not be used as a
subscript.

Exhibit 15.4. A simple APL function.

Note that the domain of the programmer-defined function is not declared and therefore cannot be
checked.

5 R ← DEMO S

[1] A ← 2.11 34.2 4.8 18.1

[2] R ← A[S]

5

Line 1 We define a length-4 array.

Line 2 The parameter, S, is used to subscript A. If the subscript is in the range 1..4, the corre-
sponding item in the array will be selected and bound to R, the local name for the result.

440 CHAPTER 15. THE SEMANTICS OF TYPES

Exhibit 15.5. APL does not check domains of programmer-defined functions.

Programmer writes APL’s response Notes

2←DEMO 3 4.8 (a)
2←DEMO ’N’ Domain Error, line 2 of DEMO (b)
2←DEMO 5 Index error, line 2 of DEMO (c)

a. A correct function call. A[3] is returned.

b. The domain is checked on a call to a primitive function.

c. The subscript range is also checked. 5 is too large for array A.

in the second call is not detected when control enters DEMO. However, it is detected during the
subscript computation, because subscript is a primitive function.

Dynamically typed languages often supply domain predicates for the primitive domains, so that
programmers may write their own domain checks. The most general kind of domain predicate is a
Boolean function of two parameters; let us call it IN. One parameter is an object, Ob, the other is
a domain name, D. The predicate IN(Ob, D) returns TRUE if D is the domain of Ob.

Some languages do not permit a domain name to be used as a parameter. Such a language
might supply a separate domain predicate for each domain. In this case the domain name is made
part of the predicate name, and each predicate tests whether its single argument belongs to a
specific domain. This is well illustrated by the domain predicates in LISP [Exhibit 15.6].

If a dynamically typed language supports domain predicates, a programmer can do manual
domain checking within functions. A function will accept, as arguments, objects of any domain.
Within the function the programmer writes conditional statements that test the domain and take
one of several branches. Conditionals can be set up that will emulate the checking done automati-
cally in Pascal. Thus, whatever operations are ultimately applied to the data, they are sure to be

Exhibit 15.6. Types and domain checking in LISP.

The information given here is for the dialect Common LISP.

Automatic domain checking: primitive functions check the domains of their arguments.

Primitive domains: number (integer), symbol (the name of an object), atom (any nonlist entity),
list (a sequence of lists and/or atoms, delimited by parentheses).

Primitive domain predicates: numberp, symbolp, atom, listp, null (true for empty lists). Example:
“(numberp s)” returns T (for true) if s is a number, and F otherwise.

15.1. SEMANTIC DESCRIPTION 441

appropriate for the data encoding. Domain testing becomes another form of data-validity checking,
similar to checking for an absurd data value or a table index that is out of range.

15.1.3 Domains in the 1970s

Early C: Domains Checked for Primitive Operators Only.

Type compatibility is a complex question in C. First, we must distinguish among various versions
of C, especially between the old semistandard version of C which is described in the Kernighan
and Ritchie book (we refer to this as K&R C) and ANSI C. There are far-reaching differences in the
typing and type checking rules between the oldest versions and ANSI C. Here we discuss both K&R
C and the ANSI standard.

Second, some, but not all, implementations of K&R C have an accompanying program named
LINT, which may be used by the programmer to examine programs and locate Pascal-style type
errors. A LINT program defines many things as errors that the accompanying C compiler would let
go, and thus LINT defines a language with different semantics than C, but the same syntax. LINT
implements type constructors and domain identity checking similar to that in Pascal.

Third, many recent non-ANSI compilers generate nonfatal “warning messages” for Pascal-style
type errors, but compile the code anyway. It amounts to a semantic quibble whether the warning
messages or the generated code defines the semantics of the language.

Finally, type compatibility for array and record types in K&R C was almost a moot point. There
was nothing that you could do coherently with a compound object except store its address into a
pointer. Thus the question of type checking for function parameters was reduced to a question of
what could be done with pointers.

A rough generalization about early C translators is that types were used primarily for storage
allocation and access, as described in Chapter 5. Types were declared so that the compiler could
know the number, position, and encoding of the fields of an object. This is essential information for
producing object code. The types of arguments to primitive functions and operators were checked.
But, as in APL, arguments to programmer-defined functions were not checked at all. A function
call could have the wrong number, wrong type, or wrong sequence of arguments, and the violation
would not be detected.

Further, the rules for pointers created a gaping hole in the type structure. A pointer, declared
to point at one type, could be set to point at an object of a different type. Older C compilers would
not comment on this type violation. In newer compilers, this would trigger a warning message,
but object code will be generated anyway. In Exhibit 15.7, the pointer r is made to point at an
object whose type does not match r’s declared type. Then a field is selected from r’s object, and
interpreted as if it were the proper type for r, which is untrue. This technique can be used to
“fool” the compiler into compiling code that would cause a type error if it were executed without
the pointers. Thus the language definition and the compiler provide no sure control over whether
or not a pointer is pointing at an object of the appropriate type.

442 CHAPTER 15. THE SEMANTICS OF TYPES

Exhibit 15.7. Pointer assignments in K&R C.

Two types named funny and runny are defined, and are used to declare two pointers (named f

and r) and an ordinary structured variable (named ff). Note that these types are structurally
different. The following statements will compile without causing a fatal error. Recent non-ANSI C
compilers are likely to produce a warning message for the last assignment.

struct runny {int a; int b;} *r;

struct funny {int a; float c;} *f, ff= {2, 3.1};

f = & ff; /* This makes f point at the variable ff. */

r = f; /* This sets r to point at the same thing as f,

which is, of course, the wrong type for r. */

After executing these lines, storage will contain:

f

r

ff
2 3.1

The first expression, below, is normal. The second field of a funny object is selected. It is
expected to be, and is, a float. The second expression, though, selects the second field of a runny

object, which is expected to be an integer, but is actually a float that will be interpreted as an
integer.

f–>c Select 2nd part of f’s struct; float result is interpreted as float.
r–>b Select 2nd part of r’s struct; float result is interpreted as int.

Programmer-defined Domains

Time and experience have influenced design philosophy. The historical trend has been to give
domains an increasingly important role in programming languages because they are a great aid
to producing semantically sound programs. In older languages, all domains were predefined, and
their relationships (if any) were predefined and not modifiable. No domain checking was done
that distinguished between objects of similarly represented domains. For example, in C (which
was developed by Ritchie in about 1972), integers and truth values are the same domain. More
important, the types of the arguments to programmer-defined functions were not checked.

In newer languages, such as Pascal (released by Jensen and Wirth in 1974), ways were provided
to define new domains, and more elaborate domain-matching rules were implemented. In addition
to the usual record, array, and pointer types, Pascal included several new kinds of type definitions:
subrange type, enumerated type,4 set type, and type mapping [Exhibit 15.8]. Domain relationships
began to become important. In Pascal, these were pre-defined and unmodifiable. Let us consider
the four types of relationships in Pascal.

4Enumerated types were not supported by early versions of C.

15.1. SEMANTIC DESCRIPTION 443

Exhibit 15.8. Diagrams of the domain relationships in Pascal.

TYPE index = 0..100;

age = integer;

• Boolean, integer, and real are primitive types.

• The domain Boolean is semantically unrelated to integer, even though it is defined by mapping
onto a subset of the integers.

• Integer and real intersect; that is, some reals can be converted to integers; most or all integers
(depending on the implementation) are also representable as reals.

• The domain index is a subset of the domain integer, and fully compatible.

• The domain age is merged with the domain integer. There is no distinction.

integer
age

Merger

index

integer

Subset

real

integerIntersection

Boolean

integer

Unrelated

Intersection. The domains real and integer intersect in Pascal as they did in ALGOL. Set
domains can intersect with other set domains over the same base type.

Unrelated. Domains created by array or record or pointer type declarations are unrelated to
any other domain. Domains defined by enumeration (including the primitive domains char and
Boolean) are unrelated semantically to any other domain. However, all enumerated types are
represented by integers and can be converted to the domain integer by explicit use of the primitive
function ord.

Subset. The Pascal subrange declaration narrows a domain to a compatible smaller domain
with the same representation. Variables of a subrange type are restricted to storing values in the
subrange. Attempting to store a value outside this range results in a run-time error and program
termination. Using a subrange variable incurs run-time overhead due to automatic range-checking
every time a value is stored in it! While the protection provided by subranges is valuable, especially

444 CHAPTER 15. THE SEMANTICS OF TYPES

during program debugging, the cost is great. Further, because a range error causes a Pascal program
to “bomb”, subranges cannot be used for ordinary input validation. They are primarily useful for
trapping subscript values that have unintentionally become too large or too small.

Merger. Compatibility rules were very loose in the original K&R C; they are far tighter in Pascal.
For example, truth values, integers, and addresses comprise different domains, and a pointer to a
real is incompatible with a pointer to an integer. The compiler checks the domains of all function
arguments and requires that the formal and actual parameters have the same domain identity (not
just the same representation, as in C).

However, even in Pascal, the relationships among types, structures, and domains are not easily
stated. In Pascal, we may have merged domains, that is, more than one type name associated with
one domain [Exhibit 15.18], and more than one domain associated with one structural description
[Exhibit 15.14]. The number of distinct domains is equal neither to the number of names nor to
the number of different structures defined.

15.1.4 Domains in the 1980s

Languages newer than Pascal embody a clearer view of the nature and uses of domains. For example,
Ada gives the programmer more control over the relationships among new domains (see Section
15.3).

In C, the programmer specifies the physical size of variables by declaring them to be “long
int”, “short int”, or “int” (meaning either one). In contrast, Ada encourages the programmer
to declare domains abstractly, by specifying characteristics (range, precision) of the values to be rep-
resented, rather than concretely, by specifying the number of machine locations needed. Programs
containing abstract specifications are more easily ported to machines with diverse architectures.

The run-time overhead incurred in Pascal for range checking is also incurred in Ada. However,
the Ada designers provided a means (the “pragma”) to turn this checking off. The programmer can
have the dual advantages of automatic checking during debugging and efficiency when a program
enters production use.

Finally, there are languages that let the programmer define a domain with more than one
representation. Having multiply represented domains is basic to the modern functional languages
and the object-oriented languages.5

15.2 Type Checking

Translators use domain checking (often called type checking) to ensure the semantic validity of
function calls. In a domain-checked language, the domain of each formal parameter of a function is
declared to be a specific or generic data type. When the programmer tries to apply a function to a set
of actual parameters, the translator verifies that the type of each actual parameter is appropriate;

5These are discussed in Chapter 17.

15.2. TYPE CHECKING 445

the type of the actual parameter must be contained in the domain of the corresponding formal
parameter. If this is true we say the actual and formal parameters are type compatible, or that their
types match.

If any parameter fails this test, the function call will not be carried out and an error comment
will be generated. This process can be done dynamically, rejecting meaningless function calls at
run time, or statically, detecting type errors at compile time. The actual rules for determining
whether two types match can be confusingly complex and vary greatly from language to language.
The rest of this chapter discusses and contrasts the compatibility rules for a few languages.

15.2.1 Strong Typing

The term strongly typed language means, roughly, a language that checks the semantic validity of
all function calls. There is considerable confusion, though, about the exact meaning of this term.
In this section we will go through a series of increasingly sophisticated definitions of strong typing.

Some early authors called a language “typed” (abbreviated as ST#1) if the programmer used
declarations to specify the types of variables. By this definition, APL and BASIC are not ST#1
and C and Pascal are. This definition classes languages such as BASIC, (where the data type is
implicitly declared by the form of the variable name) with languages such as APL which do not
associate types with identifiers at all. A better definition (ST#2) is: a language is typed if there
is a type associated with each variable name, and only objects of that type can be stored in the
variable. APL is not ST#2 and BASIC, C and Pascal are.

It became clear that the important distinction was not whether every object had a declared
type, but whether those types were used to support semantic validity. A new name and a third,
stricter definition evolved: A strongly typed language (ST#3) is one in which the compiler enforces
these type compatibility rules:

• All objects (variables, values, and formal parameters) are divided into sets called types, usually
labeled by type names. Types can be built in or programmer defined. Each object belongs
to exactly one type.

• A type may have two or more variants. The variant to which an object belongs can be
ascertained by a program at run time. Perhaps it is encoded by a tag field associated with
the object.

• A variable can only store values of the same type.

• In a legal function call, the type of each actual argument must match the type of the cor-
responding formal parameter. The exact definition of compatibility is language-dependent.
Roughly, though, two types are usually compatible if they are the same type or are overlapping
subsets of the same type.

• If an argument belongs to a type with variants, the programmer must explicitly test which
variant is present and write code that handles each variant appropriately.

446 CHAPTER 15. THE SEMANTICS OF TYPES

APL is not ST#3. Neither is the original Kernighan and Ritchie version of C, because calls to
user-defined functions are not type-checked. Pascal, Ada, and ANSI C are ST#3 except for some
“escape hatches”. These are Pascal’s nondiscriminated variant record and the analogous union
data type in C, as well as ANSI C’s continued support of K&R C’s original function definition syntax
and semantics. BASIC is ST#3, in a rather uninteresting way, because it will never let you apply
numeric operators to strings or vice versa.

When using the method of top-down programming, a programmer begins by working with a
very general description of a problem and then making several passes over that description. On
each pass the programmer specifies more details of both the data representation and the method for
computation. In the middle of this process an abstract solution for the problem has been described.
The algorithms and data are defined in a rough fashion but nothing is specified fully yet. Finally,
after several passes, the programmer arrives at a fully specified algorithm which can be coded.

Languages that are ST#3 offer limited support for top-down programming, primarily because
they require the full specification of data representations too early in the process. Functions can
only be written to accept parameters of fully specified types. In order to define functions over
abstract data types, a language must permit postponement of the time at which representation
details need to be pinned down.

15.2.2 Strong Typing and Data Abstraction

An abstract data type, or ADT, is a combination of one or more abstract domains together with a set
of functions that operate on them, and related data items that characterize the domain. An ADT
is an abstraction. We can define an abstraction in English by specifying its required properties.
For example, we can define a “tire” as a resilient covering for the rim of a wheel. This definition is
a generic definition because it includes “tires” of many sizes, shapes, and materials. Similarly, we
can use English to define an ADT; to define “stack” we define the semantics of “push” and “pop”
when applied to a stack object.

Only part of this information can be expressed explicitly within a programming language: the
intent and semantic properties of the ADT must remain implicit. For example, the fact that the
push and pop operations for the stack ADT implement a last-in-first-out accessing pattern is not
expressible in any way except a comment. What we can express in a program are abstract functions
(function headers without accompanying bodies) and abstract domains (domain names without
accompanying data type definitions). For example, Exhibit 15.9 defines the ADT array_stack in
an Ada-like language. An array_stack is an array-based data structure capable of storing multiple
data items, together with the functions Push and Pop that implement a LIFO accessing pattern,
the function Top that returns a copy of the most recently pushed item, and predicates Empty and
Full.

We can make a specific implementation of an ADT in an ST#3 language by defining a specific
data type to represent each abstract domain in the ADT, and a specific function to carry out
each abstract function. For example, to make a specific implementation of a stack, we first define
a specific data type to represent the stack. Functions “push” and “pop” are then defined that

15.2. TYPE CHECKING 447

Exhibit 15.9. Definition of the ADT “array_stack”.

We define the abstract data type array_stack by declaring a parameterized generic domain
and listing the relevant abstract functions. We use syntax modeled after Ada, but extended by
several constructs that are not supported by Ada.

ADT array_stack Begin

ParamType Stack(

T:type; -- Type of data objects to be stored.

L:integer); -- Maximum number of simultaneous objects.

Function Top(

S: in Stack) -- Stack itself is unchanged.

return T; -- Returns copy of most recently pushed data.

Function Pop(

S: in out Stack) -- Top item is removed from S.

return T; -- Returns most recently pushed data.

Function Push(

item: in T, -- Store item at top of stack.

S: in out Stack)

return Boolean; -- Return true if push executed successfully.

Function Full(

S: in Stack) -- Stack itself is unchanged.

return Boolean; -- Return TRUE if S.store is full.

Function Empty(

S: in Stack) -- Stack itself is unchanged.

return Boolean; -- Return TRUE if stack contains no data.

End ADT array_stack;

operate on that type to carry out the semantics defined for the ADT operations. We are able to
define a stack of 100 characters in Pascal (to be represented by an array [1..100] of char), or a stack
of integers (to be represented by a linked list of integers). However, we cannot define the abstract
data type itself in these languages.

This is because, by definition, an ST#3 language has disjoint (nonoverlapping) types.6 There is
no general provision for talking about groups of types or defining a function that would apply to
more than one type, or to a partially unspecified type. A function definition in an ST#3 language
specifies the types of its arguments, so every ST#3 function depends on a previously defined specific
type and cannot be written in a general way to operate on a generic domain. Thus a program in
Pascal that uses two kinds of stacks requires two sets of type declarations and two separate but
nearly identical definitions of each stack function.

6Variant records and unions are inadequate support for generic types.

448 CHAPTER 15. THE SEMANTICS OF TYPES

Many Pascal students have asked why they could not make one set of definitions for a stack
and its operations, then have it automatically applied to stacks of any kind of object. The best
that can be done in Pascal is to write a set of stack definitions and store them in a source code
library. To use the stack code, the source code must be edited to change the type definitions, then
compiled. The language does not support compiled modules with type flexibility, and it does not
even provide an automated way to do the editing job.

When Ada was developed, a facility was included to automate this tailoring process. A set of
definitions called a generic package can be defined in Ada, which contains the type declarations
and function definitions for an abstract data type such as “stack”. These definitions are written in
terms of a type parameter. Later, the package must be instantiated with a concrete type during
the first phase of compilation. This process generates ordinary program code that is ST#3, and it
is then compiled. Generic packages for standard algorithms on commonly useful data structures
can be included in libraries. These are called in and instantiated when needed. The need to write
and debug new code is minimized. However, the end product is the same as if the programmer had
written fully concrete code in the first place. Thus Ada’s generic facility adds real convenience but
not significant flexibility to the language.

Chapter 17 describes Ada generic packages and examines the support for data abstraction in
more modern languages such as Miranda and C++, which permit the user to define generic types
and functions over these types. Chapter 17 also presents a fourth definition of “strong typing”
which admits automatic type checking for these nonhomogeneous types.

15.3 Domain Identity: Different Domain/ Same Domain?

15.3.1 Internal and External Domains

There is generally not a one-to-one relationship between type names and distinct domains. Most
languages use type names to define domain membership, but a translator may implement two type
names as the same domain or as distinguishable domains. It is possible in some languages to define
two different type names which have identical semantics and, therefore, denote the same domain,
and also to define different semantics for structurally identical types, so that they become distinct
domains.

We must first distinguish between external domains and internal domains. External domains

are those that occur in the programmer’s application area. Internal domains are the semantic
groupings of objects or types that are recognized and maintained by a language translator. These
are not necessarily the same thing. Two types, A and B, form distinguishable internal domains

if the translator implements different semantics for them. Operationally that means that some
function is defined differently for type A than it is for type B. Two distinguishable domains are
independent if no function defined for one is applicable to objects from the other, and vice versa. If
this property holds in one direction but not in the other, we say the domains are semiindependent.
If the implementations of two external domains have the same internal semantics, we say they are
internally merged.

15.3. DOMAIN IDENTITY: DIFFERENT DOMAIN/ SAME DOMAIN? 449

Exhibit 15.10. Merging the domains “truth value” and “integer”.

Neither C nor FORTH distinguishes between integers and truth values. There are many situations
in which this is convenient. Programmers using C and FORTH commonly use the “tricks” below
to shorten their code. (The examples are written in both languages.)

Using a truth value as an integer. Your process compares two input streams, item by item,
and gives a TRUE answer if the items are not equal. You wish to count the number of nonmatching
item pairs. This is easy: just “add up” the TRUE values. (TRUE is represented by 1 in C and by −1
in FORTH.)

C: difference_count = difference_count + (item1 != item2);
FORTH: item1 item2 = NOT difference_count @ + difference_count !

Using an integer as a truth value. You wish to terminate a loop when the input variable, an
integer, equals zero. Easy! Remember that 0 is the representation for FALSE, and write:

C: while (input_variable) { 〈process〉 } ;
FORTH: BEGIN input_variable @ WHILE 〈process〉 REPEAT

15.3.2 Internally Merged Domains

Some languages maintain no semantic distinction among domains that have the same internal
representation. For example, in FORTH and C, integers, truth values, and characters are represented
identically. In these languages, an integer is a truth value is a character, and a truth value or a
character is an integer. A value belonging to any one of these external domains can be used in a
context appropriate for any other one. An integer operation may be applied at will to a truth value
or a character. No “conversion” process is needed to go between these domains.

This is one of the very convenient aspects of C: the translator lets the programmer decide
whether it is meaningful to use a truth value as if it were an integer, and thus does not prevent the
programmer from exploiting an implicit relationship between domains [Exhibit 15.10].

Of course, one could also claim that this kind of code is obscure and ought to be well documented
if it is written at all. In fact, C and FORTH programmers use these tricks frequently, and the very
commonness of such code reduces the difficulty of understanding it.

A more serious cost associated with internally merged domains is that the translator has no way
of knowing which objects belong to which external domain, and so cannot help the programmer
avoid unintended and meaningless operations. This is illustrated by the very strange C code in
Exhibit 15.11. Let us trace the execution of this odd expression:

• The ASCII codes for ’a’ and ’b’ are compared. ’a’ is not greater than ’b’, so the answer
is FALSE, which is represented by 0 (4 bytes).

• The character ’c’ (one byte) is interpreted as an integer. Its ASCII code, 99, must be
lengthened to 4 bytes to match the length of the integer 5.

450 CHAPTER 15. THE SEMANTICS OF TYPES

Exhibit 15.11. Many misinterpretations!

The “/” and the “+” are nonsensical operations. They would be flagged as errors in Pascal,
but they are accepted in C because integers, characters, and truth values belong to one internally
merged domain.

if ((’a’ > ’b’) / (5 + ’c’)) x=1; else t=1;

FALSE selects the else clause.

Result is that t becomes 1. FALSE = 0

0 = FALSE

integer 63

68

• We add 5 to 99 giving 104 (4 bytes).

• The truth value, 0, from item (1) is interpreted as an integer and divided by 104, giving 0 (4
bytes).

• This integer 0 is now interpreted as the truth value FALSE, and used in the “if” test, selecting
the else clause.

• Finally, we store 1 in the variable t.

This example illustrates the variety of ways that C values can be interpreted, but it is so
artificial that it does not provide a convincing example of the cost of internally merged domains.
However, this kind of domain merging does frequently lead to errors, especially for programmers
who commonly use more than one language. Exhibit 15.12 illustrates a common and galling error
that most former Pascal programmers make when they begin to write code in C.

As a general rule, the language that has distinct internal domains representing distinct external
domains is easier to learn and easier to use. A compiler with full type checking is a powerful ally
in the battle to debug a large program. The price paid for this assistance is that the programmer
must explicitly indicate domain conversions.

15.3.3 Domain Mapping

An existing domain may be used to implement a new domain by mapping the elements of the new
domain onto the elements of the old. This produces two domains with a common implementation
but dissimilar semantic intent. For example, one could represent the imaginary numbers by mapping
each imaginary onto the corresponding real and leaving implicit the fact that each one represents
that real multiplied by i.

When a new domain, D′, is implemented by mapping it onto an old domain, D, we say that
every element of D′ is represented by an element from D. In this case, the object from D ′ can be

15.3. DOMAIN IDENTITY: DIFFERENT DOMAIN/ SAME DOMAIN? 451

Exhibit 15.12. The bane of the former Pascal programmer.

The Pascal comparison operator is “=”, but C uses “==” for comparison and “=” for assign-
ment. Intending to repeat a process many times, as long as the variable named “a” remains equal
to zero, the absentminded programmer writes:

do 〈process to be repeated〉 while (a=0);

Unfortunately, this process will be executed exactly once. The first time the expression a=0

is evaluated, the value zero will be stored in the variable a, and also returned as the value of the
assignment expression. The while test interprets the 0 as FALSE and terminates the loop.

Moreover, when the perplexed programmer looks at the value in a, she or he will see the number
zero and be unable to understand why the loop did not repeat!

“converted” into an object from D, or vice versa, by changing only the domain identifier attached
to the object. The physical form of the value does not need to be changed. The same domain,
D, may be used to implement other domains also, making a many-to-one relationship between
implemented domains and an implementing domain [Exhibit 15.13].

Although a D-object is structurally identical to a D ′-object, different sets of functions are
probably appropriate for D and D′. For example, bit strings are sometimes used to represent both
integers and arrays of switches. Division is meaningful for integers but not for switches, and masking
operations may be meaningful for arrays of switches but not for integers. Concatenation might be
a meaningful operation for bit strings that are neither integers nor switches. Thus the semantic
intent of the object’s domain, not just its physical representation, determines what operations are
meaningful. The intent should be considered before applying a function to the object.

Mapped Domains with Distinct Identities

The primitive types in Pascal demonstrate domain mapping where all domains have separate iden-
tities. Several Pascal primitive types are actually represented in the computer as integers [Exhibit
15.13]. Pascal also permits the programmer to define an “enumerated type”. To do this, the

Exhibit 15.13. Domains mapped onto integers in Pascal.

Semantic Intent Typical Implementations

integer numbers full-word bit strings
alphabetic characters full-word integers (8-bit if packed)
machine addresses integers 0 .. virtual memory size
truth values (false, true) integers (0=false, 1=true)
enumerated type integers 0 .. cardinality of the type

452 CHAPTER 15. THE SEMANTICS OF TYPES

programmer enumerates names for the elements of a finite type, and the type is implemented by
mapping the elements, in the order given, onto the integers.

The computer hardware itself defines the mappings for integers, addresses, and characters. Inte-
gers are defined by the operation of the machine language add, negate, and comparison instructions.
Addresses are mapped onto the integers by the memory mapping hardware of the machine; one
computes the next machine address in a sequence by using the integer “add 1” machine instruction.
The mapping from characters to bit strings is defined by the I/O devices, most of which implement
a common character code such as ASCII.

Truth values are mapped onto bit strings by a language implementor. “False” is virtually always
represented as a string of 0 bits. Anything nonzero is therefore taken to be “true”. When a “true”
value must be generated by the translator, most languages generate the string 00000001 with a
number of leading zeros appropriate to fill a memory location. (Some translators generate a string
of all 1 bits.)

Pascal defines primitive functions and procedures for these primitive domains. Although the
representations of these domains are structurally compatible with each other, the primitive functions
only accept arguments from the defined domain. A Pascal translator checks the declared data type
of each argument against the declared domain of a function and enforces what is, ideally, the
programmer’s semantic intent. If the programmer wants to do some operation that would violate
the type rules, he or she must first explicitly convert the argument to a different type.

15.4 Programmer-Defined Domains

15.4.1 Type Description versus Type Name

In the historical progression from ALGOL, through C, Pascal, and Ada, to C++ and ML, types have
become the basis for increasingly powerful semantic mechanisms and have been given increasingly
clear semantics. Languages have supported programmer-defined types since the 1960s. During
this time the relation between the type description, the type name, and the type’s semantics have
varied greatly. In the older languages, such as K&R C, a type name was no more and no less than
a shorthand notation for the type description. All types with the same description were merged
into one internal domain. In such a language two structurally identical objects belong to the same
domain even if they were declared using different type names.

A more modern approach is to give meaning to the type name over and above the meaning of
the type description. In such a language the programmer may use the type name to help express
semantics. Thus the same type description may be associated with more than one type name to
express semantically different types that happen to have the same representation [Exhibit 15.14].
The compiler can then use these differentiated type names to help the programmer achieve semantic
validity. In this situation, type checking can catch errors that checking only for structural properties
cannot detect.

15.4. PROGRAMMER-DEFINED DOMAINS 453

Exhibit 15.14. Two types with the same description.

In writing a graphics program one might use two related but distinct types:

• A set of points in the Cartesian plane

• A set of points in the polar coordinate plane

Both of these types are normally represented by a pair of real numbers. In the Pascal type decla-
rations below, both are given the same structure. The two type names will not be synonyms, since
functions defined for one cannot be applied to the other.

TYPE cart_point = ARRAY [1..2] OF real;

polar_point = ARRAY [1..2] OF real;

15.4.2 Type Constructors

Old languages had a fixed number of distinct domains. In modern languages, type constructors
are provided to permit the programmer to define new domains. Each new domain may be, and
normally is, bound to a new type name. The new type name can be used to declare objects that
belong to the domain and to declare the domain of function parameters.

A type constructor is a keyword or syntactic construct whose use creates a new domain. Not
all ways of declaring new types are type constructors. Type constructors are chosen by a language
designer and vary greatly among languages. For example, “array” and “↑” are type constructors in
Pascal but the analogous “[〈dimension〉]” and “*” in C do not construct domains. However, struct
in C and the analogous record in Pascal are both type constructors.

Constructed Domains and Type Checking

When a programmer uses a type constructor in a type declaration, the declared type name is
bound to the newly formed domain. Thereafter, other program statements can declare objects and
function parameters in that domain by referring to the type name directly or indirectly [Exhibit
15.15].

In an ST#3 language, a domain, D, created by a type constructor is independent; that is, it
is functionally incompatible with all existing or future domains.7 No functions may be applied to
objects from D unless they are explicitly defined for D, and functions defined for D may not be
applied to objects from any other domain. An object is type-compatible with a formal parameter
if and only if both were declared to belong to the same domain.

Every occurrence of a type constructor constructs a different domain. If types D1 and D2
are declarations with identical type definitions containing a type constructor, D1 and D2 are
incompatible. In some languages, a type constructor may be used in a variable or parameter

7In more modern languages, this incompatibility may be modified by rules for domain inheritance.

454 CHAPTER 15. THE SEMANTICS OF TYPES

Exhibit 15.15. A type constructor in Pascal.

The keyword array is a type constructor in Pascal; each use of array builds a new domain. Here
we construct a new domain and bind the name BoxDimensions to it. We use this type name to
define a function, vol, that operates on BoxDimensions.

Giving a new name to a type does not construct a domain in Pascal. The type name Tank

names the same domain as BoxDimensions.

TYPE BoxDimensions = array [1..3] of Real;

Tank = BoxDimensions;

VAR p, q: BoxDimensions;

t: Tank;

FUNCTION vol(d: BoxDimensions): real;

BEGIN vol := d[1] * d[2] * d[3] END;

The function vol may be legally applied to variables p and q. The types match because p, q,
and d were all declared to be BoxDimensions. This function may also be applied to t, since it was
declared using the same instance of array as was BoxDimensions.

declaration. This constructs a domain that is incompatible with everything because the new domain
has no name, and other parts of the program are unable to refer to it. The only variables that can
ever belong to this domain are those created by the same declaration.

Thus the variables p and q in Exhibit 15.16 have the same (unnamed) domain. Variables r and
s have the same domain, structurally identical to the domain of p and q, but semantically distinct
because they were declared with different uses of the type constructor array. No other variables
or parameters can belong to the same domain as p and q, or as r and s. Specifically, variable v

does not belong to the same domain as any of these other variables.
An object and a parameter belonging to different domains are incompatible, even if they have the

same structural description. A type constructor, therefore, is never used to declare the parameters
of a function: no variable could ever match the type of the parameter, and the function could
never be called. In Exhibit 15.16, the function NoGood can never be called because the type of its
parameter, t, can never match the type of any variable. Specifically, t is not in the same domain
as p, r, or v, but belongs to a fourth domain with distinct semantics.

15.4.3 Types Defined by Mapping

Non-Independent Mapped Types

In some languages, a type defined by mapping does not construct a new, independent domain.
Rather, the new type name is an alternative way to refer to an existing domain. The typedef

declaration in C is an example. It defines the new type name as a synonym for its definition, which

15.4. PROGRAMMER-DEFINED DOMAINS 455

Exhibit 15.16. Incompatible domains in Pascal.

Four incompatible domains are constructed here, by using the type constructor array four
times. Each of the identifiers p, r, v, and t belongs to a different domain. The function NoGood

cannot ever be called because its parameter, t, is not in the same domain as any other object.

TYPE VitalStats = array [1..3] of real;

VAR p, q: array [1..3] of real;

r, s: array [1..3] of real;

v : VitalStats;

FUNCTION NoGood(t: array[1..3] of real):real;

BEGIN NoGood := t[1] + t[2] + t[3] END;

is often a structural description [Exhibit 15.17]. Although typedef does not create a new domain,
a typedef declaration is useful in C because the syntax for using typedef names is clearer and
more convenient than the syntax for using their descriptions.

C was one of the earliest languages developed that permitted the programmer to declare new
types. At that time, the relationships among the name of a type, its representation, and its
semantics were only partially understood. This is probably why C has fewer type constructors than
newer languages, and why typedef is not a type constructor.8

8The typedef declaration was added to C after the language had been in use for some years.

Exhibit 15.17. Merged domains defined using typedef in C.

A point in a plane can be represented as a pair of real numbers. We define a record type using the
C type constructor struct. The identifier pt is called a type tag and can be used to refer to the
constructed domain.

We use typedef here to map three type names onto the domain pt: polar_point, xy_point,
and twisted_point. We now have four names by which we can refer to the same domain, and
they are used, below, to declare a group of type-compatible variables: pp, xp, tp, and sp.

typedef struct pt {float c1, c2;} polar_point, xy_point;

typedef pt twisted_point;

polar_point pp;

xy_point xp;

twisted_point tp;

struct pt sp;

456 CHAPTER 15. THE SEMANTICS OF TYPES

Exhibit 15.18. Merged domains in Pascal.

We declare two new type names, (LengthInFeet and LengthInMeters) by mapping them onto
the domain Real. These two types are synonyms for each other and for Real.

TYPE LengthInFeet = Real;

LengthInMeters = Real;

Pascal was developed at about the same time as C. Although Pascal does support several type
constructors (“array”, “record”, “↑”, and enumeration), it does not permit the programmer to
define a mapped domain with distinct semantics. A new type, D ′, can be mapped onto an old type,
D, as shown in Exhibit 15.18. Objects belonging to D ′ are compatible with functions defined for D,
and objects of type D are compatible with functions defined for D ′. The two external domains are
merged into one internal domain. Exhibit 15.19 shows examples of function calls on three Pascal
types that belong to the same domain.

In this situation, Pascal does not help the programmer to make the semantic distinction between
variables that represent reals and lengths, nor between different kinds of lengths. The type names
are full synonyms in all contexts, and the semantics of the two external domains are merged. The
fact that the type definitions in Exhibit 15.18 are not type constructors can be attributed to the
lack of full understanding of domains and mapping in the early 1970s.

Exhibit 15.19. Function calls with merged domains in Pascal.

Three variables are declared, one of each type defined in Exhibit 15.18. A new function,
FeetToMeters, is defined for lengths. It accepts a length, in feet, and converts it to the corre-
sponding length, in meters.

VAR r: Real;

f: LengthInFeet;

m: LengthInMeters;

FUNCTION FeetToMeters(f:LengthInFeet):LengthInMeters;

BEGIN FeetToMeters := f * 12 * 0.00254 END;

These variables are fully type-compatible; they belong to the same internal domain. Real
functions, such as “*” and “/”, and length functions, such as FeetToMeters, can legally be applied
to any combination of lengths and reals. The following function calls and assignments are all legal,
although those in the second row are semantically invalid.

r := FeetToMeters(f); r := f; f := 3.89;

f := FeetToMeters(m); r := m * 5.0; m := f / 2.0;

15.4. PROGRAMMER-DEFINED DOMAINS 457

Exhibit 15.20. Creating a compatible type name by mapping.

The new type name length is declared as a synonym for real or float.

Ada subtype length is float;

Pascal TYPE length = real;

C typedef float length;

The connection among domains, type names, and representations in Pascal and C is confusing.
We may have one domain associated with more than one type name, and more than one domain
associated with one structural description, as in Exhibit 15.14. The number of distinct domains is
equal neither to the number of type names nor the number of different structures defined.

Mapped Types that Form Distinct Domains

The confusing connection among domains, type names, and representations was “cleaned up” in
Ada. The type structure in Ada is richer than either Pascal or C. Ada permits the programmer
to declare a type D′, mapped onto D, but choose whether D and D ′ will be synonyms or name
distinct domains. Ada provides two different declaration forms for using an old type to represent a
new one.

The first form, marked by the keyword “subtype”, creates a new name for part (or all) of
the old domain [Exhibit 15.20]. The names become synonyms as they would in the corresponding
Pascal [Exhibit 15.18] and C [Exhibit 15.17] declarations.

The second Ada form, marked by the keyword “new”, creates a derived type [Exhibit 15.21]. A
derived type is a new domain that is at least partially distinct from the old domain.

An issue arises with using a new domain that was created by mapping. If the new domain
were completely incompatible with existing domains, no functions would be defined on it, and
you couldn’t define any! We must use existing function definitions to define the set of operations
appropriate for the new domain.

The primitive operations of subscript, part selection, and dereferencing are defined for all do-
mains that are constructed using the type constructors “array”, “record”, or “↑”. Given an object,
O, of a new domain, we can use these primitives to “extract” parts of O that belong to old domains.
Then we can use the functions defined for the old domains to implement the primitive functions for
the new domain. We need a similar way to go from new new domain to old for mapped domains.

Exhibit 15.21. An Ada derived type is a new domain.

The type name new_type will represent a domain that is only partially compatible with the
domain named old_type.

type new_type is new old_type;

458 CHAPTER 15. THE SEMANTICS OF TYPES

Exhibit 15.22. Type casts in Ada.

The domain tonnage is derived from the domain float. Casts are predefined in Ada for derived
types. Two casts are used here in order to permit mixed-domain arithmetic.

type tonnage is new float;

t1, t2: tonnage; -- Two variables of type tonnage,

ff : float1; -- and one of type float.

ff := 3.2;

t1 := tonnage(float(t2) * ff);

This could be in the form of a general casting operation, “REP”, that would take an object of a
new mapped domain and “extract” the object that represents it in the old domain. REP would be
a compile-time operation, changing only the domain label and not the representation. An inverse
cast, “MAKE”, would also be needed to relabel values computed in the old domain as elements of the
new domain. REP and MAKE are analogous to the Pascal functions ord and chr, but they describe
the general relationship between a mapped domain and its representation, rather than the specific
relationship between characters and integers [Exhibit 15.22].

Ada supports type casts between representing and represented types. A cast is called by putting
the target domain name in front of the value to be relabeled. REP and MAKE casts are both written
this way.

Derived types could have been defined in Ada as completely independent new domains, but they
were not. One-way compatibility was retained. We summarize the compatibility rules here, for a
new type T derived from an old type R:

• Literals of type T are written exactly like R literals.

• Functions predefined for type R can be applied to type T.

• Functions defined for type T cannot be applied to type R.

• A value of type R can be explicitly cast to type T, and vice versa.

• Such a cast must be done before values of types R and T can be mixed in an expression or
an assignment statement.

These rules implement one-way semantic protection. Objects of new_type can use functions for
old_type, but not vice versa [Exhibit 15.23]. The advantage of this partial compatibility is that
the basic definitions for a new ADT can be a bit shorter, because explicit casts are not required.
Literal values, also, don’t need to be cast to the new type. The costs of this compatibility are that
the Ada programmer must learn a complex set of type compatibility rules, and that the compiler is

15.5. TYPE CASTS, CONVERSIONS, AND COERCIONS 459

Exhibit 15.23. Domain compatibility rules in Ada.

Two new types are defined to be represented by floats. Length is a synonym for float and distance
is semantically distinct. Variables are defined of the three types.

subtype length is float;

type distance is new float;

flo: float;

len: length;

dis: distance;

The following expressions are all legal (put is an output procedure predefined for floats).

flo := 8.1; len := 8.1; dis := 8.1;

flo := flo+2.0; len := len+2.0; dis := dis+2.0;

put(flo); put(len); put(dis);

flo := flo * flo; len := len * len; dis := dis * dis;

len := flo;

len := len + flo;

The following statements have type errors.

dis := flo; An explicit type cast, as in: dis := distance(flo); must be done
before the assignment.

dis := dis + flo; Mixed type arithmetic is not allowed. One operand must be cast
before the operation.

unable to detect half of the unintentional type errors. Further, after the basic functions for a new
domain have been defined, those functions can and should be used exclusively in defining further
operations. Compatibility with the old type is no longer needed or desirable, but it is still permitted
by Ada. This seems to be a real defect in Ada’s type system.

15.5 Type Casts, Conversions, and Coercions

In the previous section we mentioned the topic of type casts briefly [Exhibit 15.23]. Here we explore
the nature of casts and also examine other kinds of conversion processes. We examine what happens
to the physical type and the semantic properties of the converted object during the conversion. In
Section 15.6, the type compatibility and conversion rules in a number of common languages are
described in detail.

Conversion processes can be classified into two categories: conversions and casts. Processes in
both categories change some property of their parameter. Both might be called for explicitly or
invoked automatically. The words “cast”, “conversion”, and “coercion” are all in common use, but

460 CHAPTER 15. THE SEMANTICS OF TYPES

Exhibit 15.24. A hierarchy of mapped domains.

The following set of domains are all represented internally as floats, but they have different
operations defined.

• Dimensions (but not distances or ages) can be multiplied to compute areas and volumes.

• Distances (but not ages) can be added to compute a total distance.

• Neither dimensions nor distances can be added to floats.

• Ages can be subtracted from each other to yield a float (age difference) and added to floats
to produce another age.

The domains “length” and “age” were defined by mapping directly onto “float”. Domains “dimen-
sion” and “distance” were defined by mapping onto “length”. We have thus created this tree of
domains:

Float

AgeLength

DistanceDimension

have fuzzy meanings.9 We use all three terms, and give them distinct meanings. We define the
terms briefly here and explain them at length in the following sections. A type cast is a change in
semantic labeling involving one domain that is mapped onto another. A conversion is a change in
the size, encoding, or reference level of an argument. A coercion is a conversion or a cast that is
invoked automatically by the translator.

15.5.1 Type Casts.

Section 15.3.3 dealt with the domain relationship called “domain mapping”, in which a new domain
is implemented by setting up a correspondence between its members and members of some existing
domain. Typically, the old and new domains are semantically unrelated. Several domains, D ′

1,
D′

2, etc. may all be mapped onto one representing domain, D. Mapped domains can thus form a
tree-structured hierarchy [Exhibit 15.24].

A type cast is a “conversion” between mapped domains. It is a curious thing: it leaves the bits of
a value unchanged but alters its domain label, thereby changing the semantics of the object. Type
casts convert values in a represented domain, D ′, to or from values in the representing domain, D.

9The word “cast” is used in books about C to include all explicitly written casts and conversions.

15.5. TYPE CASTS, CONVERSIONS, AND COERCIONS 461

Exhibit 15.25. Pascal casts for integer-mapped domains.

Represented Representing Casting Functions
Domain D′ Domain D D′ to D D to D′

enumerated type integers ord Not primitive
character integers ord chr
addresses integers Prohibited Prohibited

truth value integers ord Not primitive

For example, binary integers are used to represent characters in Pascal. The function chr, which
takes an integer and returns the corresponding character, is a cast; so is its inverse, ord [Exhibit
15.25].

The operation of casting happens entirely at compile time. A cast actually does nothing to its
argument except relabel the argument value with a different type-object. The purpose of a cast
is to communicate to the compiler that it is meaningful to use an object in what would appear to
be the wrong domain context. This prevents the compiler from generating a type-error comment.
The compiler does not generate run-time code for a cast operation—the physical representation of
the cast argument is already appropriate for the target domain and does not need to be changed.

Once the basic functions and data structures of an ADT are defined, an application program
works within the defined domains and rarely needs casts. However, the ability to cast a value
between the represented domain and the representing domain can be very important in defining
the basic ADT functions. For example, with the mapped domains “imaginary” and “real”, one
needs to use “real” operations in order to define “imaginary” arithmetic. To do this one needs to
cast the “imaginary” operands to “real”, do “real” arithmetic, then (in some cases) cast the result
back to “imaginary” [Exhibit 15.26].

Exhibit 15.26. Using casts in a mapped domain.

Using Ada, we define imaginary numbers by mapping them onto the reals. (The real domain is
called “float” in Ada. Addition and multiplication of imaginary numbers is then defined in terms
of arithmetic on the reals. Explicit casts are used here to clarify the semantics, even where they
could be omitted.

type imag is new float;

function "+" (q,r: imag) return imag is

begin return imag(float(q) + float(r)) end "+";

function "*" (q,r: imag) return float is

begin return -1 * float(q) * float(r) end "*";

462 CHAPTER 15. THE SEMANTICS OF TYPES

Exhibit 15.27. Implementing a cast in Pascal.

If we accept the semantics that 0 represents FALSE and all nonzero integers represent TRUE, the
following code converts an integer to a truth value:

FUNCTION IntToTv (k: integer): Boolean;

BEGIN if k = 0 then IntToTv := FALSE else IntToTv := TRUE END;

Pascal places limitations on casting which make the language clumsy or inappropriate for sys-
tems programming. Certain important type casts are not supported at all. In one such case, we
can write a simple function that converts integers to truth values [Exhibit 15.27]. But the casts
for address to integer and integer to address are prohibited altogether and cannot be implemented
within the defined semantics of the language. Thus any kind of address arithmetic is prohibited in
Pascal, causing some systems programmers to avoid the language.

We say that a cast is a promotion if it moves from domain D to domain D ′, like chr. A
demotion, such as ord, casts a value from D ′ to D.

A promotion cast adds a layer of semantics to the object that it did not formerly have. With
demotion casts, there is a loss of semantic information. The cast strips off the semantics of domain
D′, like an extra suit of clothes, exposing the underlying semantics of the domain D. If D was itself
a represented domain, another demotion cast would strip off another layer of semantics.

Casts Are Essential. Both demotion and promotion casts are essential during the bootstrapping
process that creates the functions for a new domain. Demotions permit operations defined for the
old domain to be used on demoted members of the new domain. One must demote a value and
operate on the underlying representation since there are, initially, no functions for the new domain.
A promotion cast must be applied to the result of the computation to “lift” it back to the level of
the new domain [Exhibit 15.28].

After this bootstrapping process is finished, elements of the new domain can and should be
manipulated only by functions defined for the new domain. It would be desirable then to “seal off”
the mapping relationship and prohibit further demotion and promotion casts.

Casters Beware! Casts are inherently dangerous operations; changing the meaning of an ob-
ject should not be done lightly. It is legitimately done only in the process of implementing new
domains, and in systems programming environments where the programmer is forced to deal with
the underlying representations of objects in order to achieve acceptable efficiency.

Many languages use type coercion to change the type of an argument to the type expected by an
operator. This is semantically meaningful if the two domains have related semantics, like integers
and reals. But a type cast, by its nature, relabels a value with the identity of a domain that is
usually unrelated, and thus changes the meaning of the value. A programmer writing an explicit
cast presumably knows what he or she is doing and is taking responsibility for the meaning of the

15.5. TYPE CASTS, CONVERSIONS, AND COERCIONS 463

Exhibit 15.28. Using casts in Ada.

Here we declare two mapped domains, length and area, and variables from the new and old
domains:

type length is new integer; -- Length and area form new domains.

type area is new integer; -- Area and length are independent domains.

k: integer := 15; -- Declare and initialize integer k.

x: length; -- x is a variable in the domain "length".

a: area; -- a is a variable in the domain "area".

A type cast is called for by writing the name of the target type followed by parentheses enclosing
an element from the original type. We may create a length-value out of an integer by using a
promotion cast:

x := length(i)

A demotion cast must be used to define basic operations for lengths. Here we define an additional
method for the primitive operator “*”.

function "*"(x, y: length) return area is -- Note a

begin

return area(integer(x) * integer(y)); -- Notes b, c

end "*";

a. The function returns a value of type area.

b. The demotion cast, is used twice, integer(x) and integer(y), so that the meaning of length
multiplication may be defined in terms of multiplication on the underlying domain, integer.

c. The promotion cast, area(z), is used to promote the underlying integer representation to the
appropriate mapped domain. Note that length is not the appropriate domain.

464 CHAPTER 15. THE SEMANTICS OF TYPES

Exhibit 15.29. Mangled meaning in PL/1.

Let us examine the automatic conversions triggered by the expression: a <= b <= c

IF (a<= b <= c) THEN x=1; ELSE t=1;

TRUE selects the THEN clause.

Result is that x becomes 1.
either TRUE = 1
 or FALSE = 0

always TRUE for c > 0

1. Compare a to b; the answer is a truth value, represented as a bit.

2. Demote the domain of the truth value to the domain “bit string”.

3. Promote the domain of the bit string to the domain integer, to match the integer c and the
definition of “<=”.

4. Promote the length of the integer to the length of c.

5. Compare the resulting integer to c. As long as c is positive, the result will always be TRUE.

6. Use this TRUE in the “if” test, selecting the “then” clause.

7. Store 1 in the variable x.

result. A flexible language must support explicit casts. However, a compiler has no understanding
of the meaning of anything. It certainly cannot discern those contexts in which it is appropriate to
change the meaning of an object.

A complication of promotion casts makes them particularly dangerous to invoke automatically.
Many domains can be mapped onto a single representing domain. When a demotion cast is used
on any of these mapped domains, it exposes the semantics of its single underlying domain. But
a promotion cast might go in any of several directions. If a promotion cast is done by a compiler
that cannot understand the code, it may utterly distort the meaning of a value. A combination
of automatic demotion and promotion casts is likely to produce total nonsense, as in the PL/1
example in Exhibit 15.29

Consider what has happened here. The second item relates a mapped domain to its underlying
representation and maps truth values onto length-1 bit strings; ’1’B represents TRUE and ’0’B

represents FALSE. These domains do not have the same semantic intent. When a demotion cast
is made, the semantic intent of the mapped domain is lost. In this example, when FALSE or TRUE

is represented as a single bit and demoted to type “bit string”, it causes the original intent to be

15.5. TYPE CASTS, CONVERSIONS, AND COERCIONS 465

“forgotten”. It is no longer possible to tell that this bit string originally represented a truth value.
In the third and fourth steps, the single bit is promoted to integer and lengthened to the size

of the integer c by padding it with leading zero bits. Lengthening is a semantically safe operation,
but promotion is not. In the fifth step, the former truth value is used as an integer, even though
this meaning is wholly inappropriate. The nonsense result of “a <= b <= c” is a result of the
automatic invocation of semantics-changing casts, a demotion followed by a promotion.

15.5.2 Type Conversions

A type conversion changes one or more of the physical properties of the object: its size, its encoding,
or its reference level. Examples of encoding conversion routines are the FORTRAN functions INT

and NINT, which change a number from floating-point encoding to binary integer encoding, using
truncation and rounding, respectively. Changing a short integer to a long integer, or vice versa, is
a size conversion. A reference conversion substitutes a value where an address or pointer is given
(by fetching) or an address where a value is given.

We are often concerned whether a conversion preserves all the information in a value, or whether
some information is lost. We use the term conservative for conversions in which all of the information
originally present is retained in the converted form, and information-losing for conversions that do
not preserve all information.

Size Conversion

Size conversion changes the number of bytes used to represent a value without changing the value’s
encoding or its semantics. Some modern machines support integers of three or four lengths, and
floats of two lengths. Many languages reflect this hardware structure by supporting types with the
same encoding and different sizes. This produces a flexible language that can be used to achieve
both time and space efficiency. However, when operands of different sizes are mixed in an operation,
their sizes must generally be adjusted to match.

For example, C provides integers of at least three lengths, 1 byte, 2 bytes and 4 bytes. The 1-
byte size, called “char”, and the 2-byte size, called “short int” or “short”, are needed to achieve
acceptable storage efficiency. Moreover, short integers correspond to the hardware capabilities of
personal computers, and so can be faster to fetch and faster in arithmetic operations than longs.
Four-byte integers, called “long int” or simply “long”, are needed to store many pointers and
numbers greater than 32,767.

We call size conversions which lengthen the representation promotions, and those which shorten
it demotions. Size promotions are always conservative; demotions lose information if the argument
is large. Size adjustment is probably the safest and most useful kind of conversion, and the easiest
to implement. Size adjustment is the only kind of automatic conversion that is generally supported
in Ada.

466 CHAPTER 15. THE SEMANTICS OF TYPES

Exhibit 15.30. Reference level in C.

We use C to define and initialize several objects that have integer encoding, long length, and various
ref-levels.

#define SAMPLE 50000L /* "L" makes this a long integer, ref-level 0. */

long int k = SAMPLE, /* Ref-level 1: a variable. */

pk = &k, / Ref-level 2: a pointer. */

**ppk = &pk; /* Ref-level 3: a pointer to a pointer. */

Encoding Conversion

When an external domain has multiple internal encodings, an encoding conversion maps one en-
coding of an object onto its nearest counterpart in the other encoding scheme. The ideal is that
unconverted and converted forms are both representations of the same external object. This is
more or less true for the conversions integer-to-floating point and floating point-to-integer that are
predefined in many languages. If the machine implementation of floating point uses more bytes
than implementation of integers in the same machine, the conversion from integer to floating point
is conservative; all integers can be represented exactly in a long enough floating-point encoding.

In the other direction, floating point-to-integer conversion is defined to give as good a mapping
as possible, although information is necessarily lost if the number has a fractional part or a large
exponent. The answer returned from a conversion can be either the integer value nearest to the real
value (conversion by rounding) or the first integer value closer to zero than the real value (conversion
by truncation). Some languages (for example, FORTRAN and Pascal), provide primitives for both
versions, others provide only one. For example, Ada) supports only conversion by rounding.

Reference Conversion

Let us define the reference level, or ref-level of an argument to be the number of times a dereference
operation must be applied to arrive at a pure value. Thus the ref-level of “3” is 0, and the ref-level
of a pointer pointing to a variable that contains this “3” is 2 [Exhibit 15.30]. A reference conversion

takes an argument of one reference level and returns a result with a difference reference level (but
the same encoding and size).

A reference demotion takes a storage object and returns a program object. A reference pro-
motion takes a program object and returns a storage object. Demotions are used all the time;
promotions are rare.

15.5.3 Type Coercion

Conversion processes can be invoked two ways: explicitly or automatically. A call on a conversion
function or a type cast that is written in the source code is an explicit conversion process. A
coercion or automatic conversion is one that is invoked by the compiler but does not appear in the

15.5. TYPE CASTS, CONVERSIONS, AND COERCIONS 467

Exhibit 15.31. Coercions and explicit conversions in Pascal.

Line (a) contains two explicit type casts. The function ord casts its argument from the domain
“char” to the underlying domain “integer”.

The addition in line (b) will trigger a coercion from integer encoding to real (floating point)
encoding. The compiler will invoke the encoding conversion because no machine instruction can
add an integer to a real without conversion. Converting the value “makes sense” of the source code.

The right sides of lines (a) and (b) trigger reference coercion, to extract values from the variables
c, Number, and DigitValue.

Var c: char;

Number: real

DigitValue: integer;

DigitValue := ord(c)-ord(’0’); { a }

Number := Number*10.0 + DigitValue; { b }

These two lines could appear in an input conversion routine that manually converts numbers in
an ASCII input stream to floating-point encoding. (This is not the best way to do the job, though.)

source code. Language definitions generally specify a set of possible coercions, which is a subset of
the conversions that can be applied explicitly.

A translator will attempt to coerce an argument when the source code does not “make sense”
as written, because the domain of some argument fails to match the domain of an operator or
function applied to it. If one (or a series) of the permitted coercions will make the argument fit the
context, it (they) will be invoked [Exhibit 15.31]. Coercions are used in many languages to change
the encoding, the size, and/or the reference level of an argument.

When a coercion must be done because of mixed-type operands, a translator could theoretically
choose to convert either argument to the type of the other. However, it is usually true that
one direction is conservative and the other is not. A conservative conversion process is always
preferred over the inverse information-losing process because it is unlikely to distort the meaning
of the argument. This is particularly important when the translator (which does not and cannot
understand the meaning of the code) is invoking the conversion. A programmer might find that the
nonconservative conversion does exactly what is needed when it discards some information. But
the translator has no way of knowing all of a programmer’s intent, and it must always “play it
safe” by choosing a conservative transformation when possible.

Size Coercion

When a language supports multiple sizes of types with the same encoding, keeping track of the
size of objects and manually converting between sizes is burdensome and distracting. It becomes
more burdensome as the number of related types grows. Such languages typically use size coercion

468 CHAPTER 15. THE SEMANTICS OF TYPES

Exhibit 15.32. COBOL fixed-point size specifications.

PICTURE Type Denoted

999 A three-digit integer.
9V99 A three-digit number with two decimal places.
999PP A number with two implied trailing zeros, in the range from 100 to 99,900.
PP999 A number with a leading decimal point followed by two implied zeros,

in the range from .00999 down to .00001

(promotion) in any context where the argument sizes are mixed. Size demotion is not a conservative
operation, so arguments are only coerced to the smaller size when a long value must be stored in
a small storage object.

For example, numbers may be declared in COBOL to be from one to many digits long, with
a decimal point anywhere, either within these digits or any number of places before or after the
string of digits. A “PICTURE” clause which conveys all this information is included in each vari-
able declaration [Exhibit 15.32]. COBOL’s type flexibility is actually important in many business
applications where the number of decimal places maintained before rounding is vital. But in order
to use two numbers of different sizes in an arithmetic expression, one number must generally be
converted to the size of the other. COBOL does this automatically; it would be a distracting and
awkward process for a programmer to manage.

Finally, a modern language must support the use and manipulation of character strings, either
as part of the language or as part of a standard library. The string facility must conveniently provide
for reading strings of varying lengths, storing them in variables, and for operating on strings of
different lengths.

Storage can be handled in two ways. Dynamically typed languages (APL, SNOBOL) and BASIC
store strings in a dynamically allocated string storage area and implement string variables by
binding the variable name to a string value. This permits string length to vary as needed. Typed
languages (C, Pascal, FORTRAN, Ada) preallocate storage for all variables and allocate fixed-size
areas to hold strings. Strings stored in these areas are adjusted in length by truncation, marking
the right end with a string termination symbol or padding the right end with blanks.

A language (or string library) should handle input, output, padding (lengthening), and trunca-
tion (shortening) operations automatically. Unhappily, many languages do not. Pascal, for example,
forces programmers to write their own string input routines and manually pad or truncate strings
to make them fit into the fixed-length spaces.

Encoding Coercion

Encoding coercions are important when a program deals with semantically related domains with
different encodings. FORTRAN originally did not implement automatic conversions in arithmetic
expressions. (That is, mixed type expressions were prohibited.) This prohibition was dropped in
FORTRAN 77 because of popular demand. Experience showed that it was a terrible nuisance for

15.5. TYPE CASTS, CONVERSIONS, AND COERCIONS 469

programmers to concern themselves with explicitly converting a 1 to a 1.0 for a computation or a
4.0 to a 4 in order to use it as a subscript.

APL and BASIC go farther. They don’t even require a programmer to make a distinction
between integer numbers and real numbers but choose an appropriate encoding dynamically and
coerce numbers when necessary.

Integer-to-real and real-to-integer conversions are both applied automatically in many languages
(FORTRAN, C) but under different circumstances. The conservative conversion is always used in
cases where arithmetic is done on operands of mixed type. This implements the intuitive require-
ment that information, and therefore meaning, should be preserved during all operations in order
that the ultimate result be meaningful and as accurate as possible.

The information-losing conversion is only applied automatically when absolutely necessary, that
is, when the programmer orders that a floating-point number be stored in an integer location. If
the programmer did this purposely, she or he is likely to be using this assignment command as an
easy way to invoke the truncation function. If the programmer did not realize this was a mixed
type assignment, the conversion is likely to result in a program error.

One might claim that such an information-losing conversion function should never be automat-
ically invoked and that a programmer should explicitly invoke an information-losing conversion if
one is needed. This is, in fact, the rule adopted by Pascal. Ada goes even further—it does not, in
general, invoke encoding coercions of any kind.10

Reference Coercion

A reference coercion happens when a program object is supplied in a context that requires a storage
object, or vice versa, and the translator “makes good” the discrepancy. Automatic dereferencing,
invoked by language translators in most languages, is a downward coercion; an address is supplied
in a context that requires a value [Exhibit 15.35]. The translator fetches the required value from
the given address. In simple contexts, such as the arithmetic statements in Exhibit 15.31, reference
coercion is a real convenience and eliminates the explicit dereferences that would otherwise clutter
the code. However, in linked list programs, which contain many situations in which automatic and
explicit dereferencing must be mixed, reference coercion leads to endless confusion. It requires great
care to write the correct combination of explicit and implicit dereferences in complex situations.
The last two lines of code in Exhibit 15.35 illustrate the nonintuitive nature of expressions that
combine explicit dereference (“*”) and reference coercion.

As seen in Chapter 6, languages exist that do not do automatic dereferencing. However, it is
so omnipresent that programming students tend to accept it as the only normal convention and
forget that a conversion process is happening.

The opposite coercion, from value to reference, is rare, since it amounts to creating a nameless
variable and storing a value in it. Under restricted circumstances it is done automatically in
FORTRAN. All function parameters in FORTRAN are passed by reference, but a programmer is

10Curiously, there is one exception to this in Ada; a integer value will be coerced to a real type if it is multiplied
by a real value.

470 CHAPTER 15. THE SEMANTICS OF TYPES

permitted to call a function with a pure value as the argument. In this situation FORTRAN must
coerce the value to an address by storing it somewhere and passing the address to the function.

Although this is the extent of reference coercions in the familiar languages, other languages (EL1,
Aleph) have been designed which apply a second reference coercion automatically when needed to
fit the context. We are all familiar with the automatic dereferencing of variables to get values.
These languages will dereference a pointer to get a value, if it fits the context.

15.6 Conversions and Casts in Common Languages

This section gives a description of the type transformations that are implemented in COBOL and
in five languages from the ALGOL family (FORTRAN, C, PL/1, Pascal, Ada). In all except Ada, if
a conversion is conservative it will be performed automatically when operands of mixed type are
used in an expression. A nonconservative conversion will only be performed when the programmer
directs that a value be stored in a variable of the lesser type. Ada has more restrictive conversion
rules.

15.6.1 COBOL

Both size and encoding conversions are performed automatically whenever they are necessary to
perform a specified operation. In practice this means almost constantly, for the following reasons:
first, objects of many sizes are usually declared; second, the encoding ASCII-string is used for most
numeric variables, but the encoding packed-decimal or binary-integer must be used for arithmetic.
Thus the language processor is constantly involved in adjusting sizes and changing encodings. The
conversions it uses are normally conservative. An information-losing size conversion will only be
performed when the programmer directs that a value be stored in a variable too small to hold it,
in which case the value will be truncated.

Because COBOL does use automatic size demotion, it is possible to lose the high-order digit(s) of
a number by attempting to store it in a field that is too short. When this happens in an arithmetic
statement, an error indicator is turned on. The programmer may (or may not) choose to test the
overflow indicator in the program. In a simple assignment statement (MOVE), though, no indication
of error is given. The programmer must be careful to avoid this, as the language does not provide
a reasonable level of error checking.

15.6.2 FORTRAN

The standard language supports a variety of types. In addition to the usual CHARACTER, LOGICAL,
INTEGER, and REAL, there are two numeric types, DOUBLE (double-precision floating point) and
COMPLEX. No conversions or casts are defined for the type LOGICAL.

Two explicit casts are provided as standard functions in FORTRAN 77. These are never applied
automatically.

15.6. CONVERSIONS AND CASTS IN COMMON LANGUAGES 471

ICHAR(ch) Demotes a character to the underlying ASCII code.
CHAR(i) Promotes an integer in the range 0..127 to a character.

Only two primitive types share both semantics and encoding; thus only one pair of size conver-
sion functions is built into the language. The conversion marked “*” is conservative.

* DBLE(r) Promotes the size from real to double precision.
REAL(d) Demotes the size from double precision to real.

Encoding conversions are more numerous because three distinct numeric types are available,
integer, floating point (real and double), and complex. The conversions marked “*” are usually
conservative.

INT(r) Converts real, double, or complex to integer by truncation.
NINT(r) Converts a real or double to an integer by rounding.

* REAL(i) Converts an integer to single-precision floating point.
REAL(c) Converts complex to real by discarding the imaginary part.

* DBLE(i) Converts from integer to double-precision floating point.
* CMPLX(x) Converts from integer or real to complex.

CMPLX(d) Converts from double precision to complex.

15.6.3 Pascal

The standard language supports a few encodings that can occur in types of different sizes: character
strings can be declared to be of any length, and character strings and Boolean arrays can be either
packed or unpacked. String lengths are adjusted for comparison and assignment as necessary.
Character strings and Boolean arrays are packed and unpacked automatically, when necessary, in
a way that is quite transparent to the programmer.

Standard Pascal provides two types, integer and real, that implement domains with related
semantics. The conversion functions accessible to the programmer are:

round(r) converts a real to an integer by rounding.

trunc(r) converts a real to an integer by truncation.

No function is provided to explicitly convert an integer to a real. Integer literals are also con-
sidered to be real literals, and the values of integer variables are converted automatically when nec-
essary. Reals are never automatically converted to integers, because that is usually an information-
losing conversion. This conversion must always be done explicitly.

Implementations of Pascal for microcomputers typically support two more types with integer en-
coding, a second size (so that both 2-byte and 4-byte integers are provided) and the type “unsigned
integer” (frequently used to implement bit masks). Conversions are provided that promote short
integers to longer ones. These are conservative operations and are applied automatically in some
common implementations. Casts from unsigned to integer may also be performed automatically.
When these are combined with the normally safe length changes, they can result in unintended

472 CHAPTER 15. THE SEMANTICS OF TYPES

changes of meaning as is typical with automatically applied casts. It is in these areas that Turbo
Pascal deviates most strongly from the standard language. Standard Pascal’s semantic protection is
lost in order to gain access to the underlying representation and convenience in handling mixtures
of the three integer-encoded types.

15.6.4 PL/1

In order to understand Ada’s restrictions on automatic type conversion, it helps to understand the
effects of the generalized conversion rules in PL/1. Extensive, generalized, automatic conversion is
supported, so that a PL/1 translator will convert any type to any type. The language designers
perceived meaningful domain relationships between several pairs of primitive types (real—integer;
bitstring—anything; numeric character string—number; bit—truth value; shorter object—longer
object of same encoding). Conversions were defined for all of these relationships and are invoked
automatically by the translator, singly or in series, whenever the programmer codes a mixed-type
operation. Because the conversion from any type to any type is defined, expressions that are
syntactically illegal in many other languages become legal in PL/1 and produce some surprising or
nonsensical results [Exhibit 15.29].

Since any PL/1 object is type compatible (by conversion) with any other object, the language
and translator cannot use domain checking to help the programmer achieve semantic validity. This
is a great loss, and it far exceeds the value of automatic conversion mechanism. Coercions are
convenient but not necessary, since explicit conversions could be used instead.

15.6.5 C

Basic Types in C. C implements a large variety of types semantically related to integers. Integers
may come in three lengths, short int (2 bytes in the ANSI C standard), long int (4 bytes), and
char (1 byte). The type name int refers to either long or short, whichever is more efficient for
the hardware.11 The type name “char” means “1-byte integer”; the semantics of chars are not
differentiated from the semantics of integers. Integer operations can be applied to chars and vice
versa. The external domains “character” and “1-byte integer” are thus merged internally in C.

An integer of any of the three lengths may have a sign or not; unsigned objects are created by
including the type modifier unsigned in the declaration. Taken together then, there are six integer
domains with eight type names.

The unsigned and signed types form distinguishable but not independent domains. In some
cases different code will be generated for values of the two varieties. In particular, the methods for
promoting the length of signed and unsigned integers are different (details are given below). On the
other hand, the machine instruction for integer “+” will be used by C to translate “x + y” whether

11In K&R C, the lengths of short and long integers were not fixed. The only rule was that shorts could not be longer
than integers and longs could not be shorter.

15.6. CONVERSIONS AND CASTS IN COMMON LANGUAGES 473

these numbers are signed or unsigned. This will normally carry out the programmer’s intent.12 A
general rule for the safe use of these types is to use signed integers for numeric computation and
unsigned for everything else (especially bit masks and addresses). Because unsigned types directly
reflect the bit-string nature of computer storage, we considered them to be the basic domain and
assert that signed values are mapped onto the unsigned. Thus we consider an int-to-unsigned cast
to be a demotion, and unsigned-to-int a promotion.

Floating-point numbers of two lengths are implemented: float (usually 4 bytes) and double
(usually 8 bytes).

Truth values exist and are mapped onto the integers. They have no separate type name but are
created by comparison operators and used by conditionals, as in any language. FALSE is represented
by “0”, TRUE by any nonzero integer. A “1” is generated when the system must create a TRUE value.
Truth values do not form a distinguishable internal domain, as their semantics are not differentiated
from the semantics of the underlying type, int.

Casts in C. C does not distinguish between conversions and casts, although neither the processes
nor their semantics are similar. Both are called “casts” in reference books, which are likely to
explain that “a cast performs a type conversion”. All conversions and casts may be explicitly
invoked using the same syntax; the name of the target type is written in parentheses before the
name or expression denoting the value that is to be changed [Exhibit 15.33].

Size Conversions in C. Size promotions may be done explicitly and are also done automatically
when operands of mixed lengths are combined. Also, short integers (int and unsigned) are promoted
to integer, and floats are promoted to double13 when they are passed as parameters to a function.
Within the function, parameters may be declared using the promoted or the original, nonpromoted,
type. When the latter is done, the argument will be automatically demoted again. Characters are
promoted and demoted at the convenience of the translator, whenever they are manipulated.

An unsigned value (integer or character) is promoted by padding it with 0 bits. A signed integer
is promoted by sign-extension; that is, by padding the high-order end with copies of the high-order
bit of the value. This retains the sign of the object and its absolute value if it is an integer. It is
thus the semantically correct way to promote a signed integer. Signed characters may be promoted
by either method, depending on the translator. Values are demoted by truncating the high-order
end, an inherently risky operation.

Encoding Conversions in C. Two encoding conversions are implemented to convert floating-
point numbers to integers and vice versa. These may be invoked automatically, or explicitly using
the “casting” syntax in Exhibit 15.33. The conservative conversion, from integer to floating point,

12A nice aspect of two’s complement encoding for negative numbers is that no special provision needs to be made
for the sign during an addition operation.

13Non-ANSI only.

474 CHAPTER 15. THE SEMANTICS OF TYPES

Exhibit 15.33. Syntax and semantics for casts and conversions in C.

int i;

unsigned u;

char c;

float f, g;

(int)u Promote an unsigned to an int, no change in bit pattern. The result
is undefined if the unsigned value is larger than the maximum int
value. However, the operation will almost certainly be carried out
by doing nothing! The high-order bit will simply be reinterpreted as
a sign.

(unsigned)i Demote an int to an unsigned, no change in bit pattern. The result is
undefined for negative integers. However, the bits of a negative num-
ber will probably be unchanged, and the sign bit will be reinterpreted
as a large positive power of 2.

(int)c A size promotion from one byte to int (2 or 4 bytes).
(float)i Convert from integer encoding to a floating point.
(int)f Convert encoding from float to integer by truncation.
(int)(f+g) Convert the sum from float to integer by truncation.
i = (int)f+g Convert the float f to an integer by truncation, then convert it back

to a float in order to add it to g. The result is a float; convert it to
an int by truncation and store it in i.

is applied automatically when mixed type operands are used in an expression. This conversion
might be automatically applied in combination with promoting the length of one of the operands.

Coercion in C. One of the anomalies of C syntax can be best understood in terms of reference
coercion. A pointer may be set to point at a variable by assigning the address of the variable to
the pointer. One indicates that the address, not the value, of the variable is to be used by writing
an “&” before the variable name. This inhibits the reference coercion that normally would have
been applied to the variable. Pointers may also point to arrays and functions, but in these cases
no reference coercion ever happens, and the “&” must not be written [Exhibit 15.34].

Pointers, explicit dereferencing, reference coercion, and inhibited coercion are all combined in
Exhibit 15.35. Arithmetic operators in C operate on numeric values, not on addresses. A commonly
useful complex data structure involves a pointer to an array of pointers which in turn index an
array of data objects. Here we declare such a structure and show some code that uses the structure.
Note that in C, adding two values is a legal operation but adding two addresses is not. Adding an
integer to a pointer which represents an array index is also legal.

15.6. CONVERSIONS AND CASTS IN COMMON LANGUAGES 475

Exhibit 15.34. Coercion complications in C.

Here we declare a variety of variables and pointers. The C syntax for setting a pointer to point at
an object is shown on the fifth line. The “&” operator means “address of”. Note that we do not
use “&” on the last two lines.

int k, *kk, *aa; Declare an integer and two pointers to integers.
int a[5]; An array of 5 integers.
int f(); This declares a function f (to be defined elsewhere) that returns an

integer.
int *ff(); A pointer to a function such as f.

kk = &k; Pointer kk is set to point at k, an integer variable.
aa = &a[0]; Pointer aa points at the first element of a, an integer.
aa = a; This also makes aa point at the beginning of array a, because the

name of an array is coerced to mean its first element.
ff = f; Set ff to point at the beginning of function f.

Comments on the right in Exhibit 15.35 document the dereferences; each assignment statement
is echoed, with code letters replacing the variables. The code “E” marks each explicit dereference,
“I” marks each inhibited dereference, “N” marks contexts in which no dereference takes place, and
“C” marks each variable where C applies reference coercion. Where multiple dereferences happen,
a list of code letters is used; these should be read left-to-right.

Note that most ordinary expressions are marked by “C”. For example, in the expression (index1

< index2), both pointer operands represent storage objects and both are coerced to pointer values
which are then compared.

The C language does not provide for handling array values coherently, nor for handling pure
values of function types. When the programmer writes an assignment involving an array or a func-
tion, the translator makes sense of the request by inhibiting the automatic coercion (dereference)
that normally would have taken place on the right side of an assignment statement. This is a
double negative situation: automatic inhibition of an automatic coercion results in no action at all.
The result is that the address originally given is assigned to the pointer.

The expression on the last line of Exhibit 15.35 is daunting; its meaning can best be ascertained
by making careful diagrams. This illustrates the complexity inherent in the C approach to references
and coercion!

15.6.6 Ada Types and Treatment of Coercion

Basic Types in the Standard Type Definition Package. As with C, a profusion of type
definitions is included in the standard Ada package. These implement four external domains: truth
value, character, integer, and real. The numeric domains are both implemented by several primitive
types.

476 CHAPTER 15. THE SEMANTICS OF TYPES

Exhibit 15.35. Explicit dereference and reference coercion in C.

int j, k, m; /* Integers. */

int value_array[100]; /* An array of integers. */

int *scanner, *temp; /* Pointers to integers. */

int *index_array[10]; /* An array of pointers to integers. */

int **index1, **index2; /* Pointers to pointers to integers. */

/* Initialize three pointers. */

scanner=value_array; /* N = N */

index1=index_array, /* N = N */

index2=&index_array[10]; /* N = I */

/* Make elements of the index array point at every tenth value. */

while (index1 < index2) /* C < C */

/* Compare the values of the pointers, not the values they point at! */

{ index1++; scanner+=10; /* N = C + 1 ; N = C + 10 */

index1 = scanner; / E = C */

}

/* Input two integers between 0 and 9; set pointers to those slots. */

scanf("%d%d", &j, &k); /* I, I */

index1=&index_array[j]; /* Set a pointer to jth index. */

index2=&index_array[k]; /* N = I */

/* Swap two pointers in index_array. */

temp=*index1; /* N = E,C */

*index1=*index2; /* E = E,C */

index2=temp; / E = C /*

/* Add an int value to 3 times another int. */

m= **index1 + *((*index2)+j)*3; /* N = E,E,C + E((E,C) + C) ∗N */

15.6. CONVERSIONS AND CASTS IN COMMON LANGUAGES 477

Exhibit 15.36. Ada integer type specification.

Here are two type declarations that will map two new domains onto some primitive integer type
with an appropriate length.

type line_count is range 0..66;

type fathom is range -5_000 .. 0;

If we declare an object of one of these constrained types, we can be sure of the range of values
that can ever be stored it it. The variable line_no can hold only values between 0 and 66.

line_no: line_count;

In contrast, these declarations for objects of the primitive integer types define variables whose
range of values can vary from one implementation to another.

count: integer;

population: long_integer;

index: short_integer;

All implementations support type integer, whose length, as in C, may vary from implementa-
tion to implementation. Types natural (like unsigned, range 0..max_representable), positive
(like natural but excludes 0), long_integer, and short_integer might also be implemented.

If the programmer simply specifies the range of values that she or he intends to store in a variable,
the translator will choose an appropriate size for the variable. Note the similarity to COBOL. The
practical reason for using this facility is illustrated by Exhibit 15.36. The range of values that can
be stored in the variable line_no is fixed and does not depend on the implementation. In contrast,
the ranges of the other three variables depend on the translator. Using the type declaration with a
range clause, therefore, produces more portable code and is considered better programming style.
An attempt to store an out-of-range number, such as 85, into line_no would cause the run-time
error “CONSTRAINT_ERROR” (called an “exception” in Ada).

As with the integer types, reals are implemented by a group of types whose lengths depend on
the implementation. These come in two varieties, floating-point types (like reals in Pascal and floats
in C) and fixed-point types (as in COBOL). The primitive type names are float, long_float, and
short_float [Exhibit 15.37].

Truth values are supported: the Ada type Boolean is defined as the enumerated type (FALSE,

TRUE). No physical or semantic relationship exists between Boolean and any other type and, there-
fore, no conversions or casts are defined for Booleans.

Characters, specifically the ASCII characters, are the other predefined enumerated type. The
mapping between the ASCII character sequence and the integers 0..127 is defined, but no functions
are defined to cast characters to integers or vice versa.

478 CHAPTER 15. THE SEMANTICS OF TYPES

Exhibit 15.37. Ada real type specification.

Use of the keyword digits indicates that the new type is to be a floating-point type; delta
indicates fixed point. The new type will be mapped onto a primitive real type with an appropriate
length and encoding. The precision of a 4-byte floating-point value is about 7 digits; 8-byte floats
provide about 16 digits of precision.

Floating-Point Declarations.

type mass is digits 15; -- Needs double length.

type pressure is digits 7 range 0.0 .. 25.0; -- Single length ok.

For fixed-point numbers, the declaration completely determines the minimum size of the rep-
resentation, as does a COBOL PICTURE clause. The delta clause specifies the required number of
decimal places of accuracy, and the range clause shows the number of places needed to the left of
the decimal.

Fixed-Point Declarations:

type dollars is delta 0.01 range 0.0 .. 10_000.0;

type voltage is delta 0.1 range -12.0 .. 24.0;

The variable dollars can take on values between 0 and 10,000. These values will be binary
approximations to these values 0.01, 0.02, etc. Successive elements in the approximation must not
differ by more than .01.

Ada Conversions and Casts Ada is the only language we have considered here whose designers
made careful distinctions among the various ways an object of one type may be “changed” into an
object of another type.

Ada provides type casts that move between a programmer-defined mapped type and its under-
lying type. These are for the purpose of defining the semantics of the mapped domain and are
never applied automatically. No casts are defined that move between predefined mapped types and
their representations.

Explicit conversions are not needed between different size objects of the same encoding. The
“safe” conservative size promotions are used freely and automatically, without any involvement
on the part of the programmer. Indeed, when using the recommended programming style the
programmer may not even be aware which size of a primitive type is used to implement his or her
objects. Ada will promote the size of the smaller object automatically when objects of different
sizes are mixed in an expression.

Representation conversion functions are defined for all numeric types to convert among the
three basic numeric encodings, integer, fixed point, and floating point. A conversion is invoked by
writing the name of the target type like a function name, and writing the value to be converted as
the argument of the function. Example: integer(123.9).

15.7. EVADING THE TYPE MATCHING RULES 479

Exhibit 15.38. Mixed type addition in Ada.

We extend the operator “+” to operate on one integer and one float by supplying an additional
computation method for “+”.

function "+" (x: integer; y:float) return float is

begin

return (float(x) + y)

end "+";

These representation conversions are available for explicit programmer use, but they are never
used for automatic coercion. This greatly simplifies the problem of maintaining protected semantic
domains. If conversions and casts are not applied automatically, the programmer’s semantic intent
can not accidentally be violated. The cost of this simplicity is inconvenience to the programmer,
since mixed-type arithmetic is, therefore, not predefined. The Ada programmer must either use
explicit type casts to do mixed-type arithmetic, or explicitly define each operator for each desired
combination of mismatched argument types [Exhibit 15.38]. At best, this is a nuisance; at worst,
it causes time and space inefficiency to translate and store the code for these simple and repetitive
function bodies.

Non-Extensible Domain Relationships

We have seen that many languages have predefined domain relationships and will use these rela-
tionships when they invoke automatic conversions. PL/1 is the most permissive of the group, as it
will automatically convert anything to anything. Ada is the most discerning of the group, and it
will invoke only casts and length conversions automatically.

None of these languages permit programmers to limit or control application of a built-in relation-
ship, and none permit them to define domain relationships of their own that will be automatically
invoked. For example, a programmer could define a new representation for numbers and write a
type conversion routine to convert integers to the new representation. But none of these translators
will use the conversion automatically, the way the integer-to-real conversion is used.

Chapter 17 explores more modern and sophisticated type systems that permit the programmer
to define more kinds of domain relationships.

15.7 Evading the Type Matching Rules

Type checking is an immense aid to the programmer. The more strict the type rules are, the
fewer stupid mistakes and oversights will go undetected. The cost of this protection, though,
is inflexibility. Occasionally a programmer needs to perform an operation that breaks the rules.

480 CHAPTER 15. THE SEMANTICS OF TYPES

Applications that can use such flexibility include conversion of integer to floating point and efficient
computation of a hash index.

Users do not normally write integer-to-floating-point conversion routines because compilers
normally supply them as primitive functions. A systems programmer, though, needs a language
that will permit him or her to deal with hardware-dependent number representations. The bits
of an integer value must be tested, shifted, and masked during the conversion process. The value
starts out as an integer, ends up as a float, and is nothing recognizable in between. A systems
programming language needs the flexibility to refer to this object as both an integer and a float.
Let us say that the number being converted must have a dual type.

Another example of the use of dual-typed objects is hashing. The intent of a hash function is to
generate a random-looking but repeatable integer within a specified range. Think of the argument
to the hash function as a bit pattern. Hashing should scramble these bits so that the various inputs
generate uniformly distributed integers as outputs. An easy way to do this is to apply an operation
that is normally meaningless for the data and take the resulting scrambled bits. For example,
adding the right and left halves of a character string using integer addition would randomize its
bits in a repeatable, efficient, and possibly useful way.

Languages that are ST#3 (all objects are typed, types do not overlap, and all function calls are
type checked) do not let a program do such operations in a straightforward way. Many, however,
provide declaration forms that function as an “escape hatch” by which the programmer can get
around the normal typing restrictions. By using such an escape hatch, a programmer declares that a
normally meaningless operation is meaningful in a program. These declarations bind multiple names
(with different types) to a single storage object or to part of an object. This gives the programmer
a way to circumvent restrictions imposed by the type checking system of the translator.

When doing this kind of operation, it is up to the programmer to make sure that the result is
semantically valid. Further, any time a program depends on a particular underlying representation,
and exploits that representation in a computation, it becomes nonportable code. Different compilers
and different machines use different representations. An obvious example is the order of two bytes
in the representation of a short integer. On an IBM PC, they will be arranged low-order, high-
order. But on a Macintosh, they will be high-order, low-order. Any code that depends on the order
of these bytes is nonportable.

Examples are given here in several languages of declarations that can bind dual types to a single
object.

FORTRAN. The EQUIVALENCE declaration is an entirely unrestricted way to map one object onto
another. No restrictions are placed on the relative sizes of these objects, or on the relative positions
of their beginning bytes. EQUIVALENCE is used in a very restricted way in Exhibit 15.39 to associate
two types with one variable. Lines (a) and (b) of Exhibit 15.39 declare four names: a real, an
integer, a one-dimensional integer array, and a two-dimensional integer array. In line (c) we use
EQUIVALENCE to map the real variable Z and the integer variable INTZ onto the same storage
location.

15.7. EVADING THE TYPE MATCHING RULES 481

Exhibit 15.39. EQUIVALENCE in FORTRAN.

EQUIVALENCE may be used to bind an additional name and type to any variable or any part of a
subscripted variable. (The letters on the right relate each declaration to its explanation.)

REAL Z (a)

INTEGER INTZ, M1(100), M2(4,25) (b)

EQUIVALENCE (INTZ, Z) (c)

EQUIVALENCE (M1(1), M2(1,1)) (d)

The following pairs of lines refer to the same storage locations:

X = Z Copy the dual-type value into a real variable.

K = INTZ - 1 Interpret the dual-type value as an integer and subtract 1.

K = M1(29) Copy an array item into K.

K = M2(1,8) Does the same thing as the line above.

Note that the subscript in the last line is (1,8) rather than (2,4) because FORTRAN arrays are
stored in column-major order, not row-major order like most other languages.

Line (d), similarly, maps the two arrays onto the same space. These two arrays have a different
number of dimensions but an equal total number of elements. We now have two names for the
same array, allowing us to refer to it using either linear or two-dimensional subscripts.

COBOL. The REDEFINES declaration is like EQUIVALENCE except that the original object and the
redefined type are required to be the same size. The redefinition must immediately follow the
original declaration.

Pascal. In FORTRAN, we declare two variables, then say, as an afterthought, that they are one
and the same object. This serves the purpose of attaching two types to an object but certainly
does not implement the abstraction “dual type”. In Pascal, we can explicitly declare a type with
two meanings, then use it to declare variables.

This is done with a nondiscriminated variant record. The common portion of the variant record
and the tag field are omitted altogether, producing a record that consists entirely of two or more
variant parts. Outside of the context of Pascal, this kind of dual type is called a free union type.
It is impossible to tell, at run time, what the semantics of a non-discriminated variant object is
supposed to be. A program may use an object as first one type, then another, without using any
conversions or casts.

The examples used above for FORTRAN EQUIVALENCE are rewritten in Exhibit 15.40 in Pascal as
nondiscriminated variant records. Analogous type declarations are given for an integer-real variable
(line b) and an array that can be accessed using either one or two subscripts (line c). The Pascal
variant record syntax requires declaration of an enumerated type (line a) with the correct number
of variants.

482 CHAPTER 15. THE SEMANTICS OF TYPES

Exhibit 15.40. Variant records in Pascal.

TYPE TwoVariants = 1..2; {a}

IntReal = RECORD CASE TwoVariants OF {b}

1: (IntName: integer);

2: (RealName: real);

END;

OneDim = ARRAY [1..100] OF integer;

TwoDim = ARRAY [1..4, 1..25] OF integer;

DualDim = RECORD CASE TwoVariants OF {c}

1: (vector: OneDim);

2: (matrix: TwoDim);

END;

Exhibit 15.41 shows examples of the use of these records to implement dual-type objects. We
declare an IntReal variable, R, and a DualDim array, A. When R is used in a context that requires
a real number, we refer to “R.RealName”. In an integer context we write “R.IntName”. Similarly,
A.vector[3] and A.matrix[1,3] refer to the same location.

C Has Two Escape Routes. In C, the union type constructor builds a free union type, like the
nondiscriminated variant record in Pascal. The syntax for the union is similar to but simpler than
the Pascal syntax for variant records. Exhibit 15.42 shows how the union type constructor can be
used in C to accomplish the same goal as the FORTRAN code in Exhibit 15.39 and the Pascal code
in Exhibit 15.41. Type declarations are given (line 1) for an integer-real variable and (line 4) for
an array that can be accessed using either one or two subscripts.

Exhibit 15.41. Use of a Pascal nondiscriminated variant record.

VAR R: IntReal;

A: DualDim;

X: Real;

K: Integer;

X = R.RealName Copy the dual-type value into a real variable.

K = R.IntName - 1 Reinterpret dual-type value as integer; subtract 1.

K = A.vector[29] Copy the second array item into K.

K = A.matrix[2,4] Does the same thing as the line above.

15.7. EVADING THE TYPE MATCHING RULES 483

Exhibit 15.42. Union data type in C.

typedef union { long int_name;

float real_name;} int_real; /* 1 */

int_real r; /* 2 */

typedef int one_dim [100];

typedef int two_dim [25][4];

typedef union { one_dim vector;

two_dim matrix;} dual_dim ; /* 3 */

dual_dim a; /* 4 */

• In line 1, type int_real is defined to be either a long integer or a floating-point number.
Enough storage will be allocated to store whichever variant is longer. (They are often the
same length.)

• Line 2 creates an object, r, of type int_real. To access it as a long integer we use the name
r.int_name. To access it as a float we use the name r.real_name.

• Line 3 defines a type named dual_dim that can be either a one- or two-dimensional array. In
either case, it has 100 integer elements.

• Line 4 declares an object, a of type dual_dim. We may access this array with either one or
two subscripts, thus: a.vector[k] or a.matrix[m][n].

Interestingly, the union type constructor is not the only way, or the easiest way, to create a
dual-type object in C. This same end can be achieved by making two pointers (an integer pointer
and a float pointer) point at the same object [Exhibit 15.43]. When the program needs an int, it
can access the object through the integer pointer. To get a float, it can use the float pointer.14

This is demonstrated in Exhibit 15.43. Here we allocate one storage object, named k, and make
two pointers, plong and pfloat, point at it. Both pointers are initialized to point at k.

Any pointer in C can be cast to any other pointer type. This causes no change except a relabeling
of the domain of the pointer. Specifically, a pointer cast does not convert the representation of the
object to which the pointer points.15

Ada Closes the Loopholes. The designers of Ada put a high value on designing a semantically
“safe” language, that would be wholly and completely ST#3. Free union types and unrestricted

14This “trick” is the basis of the object-oriented function dispatching in C++.
15The explicit cast on the initialization is not necessary at all in many older C implementations, and it is used only

to avoid a warning message in newer compilers. The code would compile, run, and produce the same answer without
the cast.

484 CHAPTER 15. THE SEMANTICS OF TYPES

Exhibit 15.43. Using pointers in C to attach two types to an object.

In C, long integers and floats are usually the same length, so we use these two types to create a
dual-type object, k. Then we compute a hash function by referring to k first as a float, and then as
an int. We store a float value into k using pflot, and take it out using plong. This does not cause
a representation conversion. Applying integer division to the misinterpreted value will not cause a
representation conversion either. The result is scrambled bits; it is complete nonsense to divide a
float value by an integer. Thus we have “hashed” the original number.

#define TABLESIZE 1000

long int j, k;

long int *plong=&k;

float *pflot = (float*)(&k);

pflot = 3.1; / Put a floating-point value into k. */

j = *plong % TABLESIZE; /* Apply mod to k to calculate a value between

zero and the size of the hash table. */

The programmer who uses this coding trick must do so carefully; any code that casts the type of
a pointer, or depends on the representations of two types to be the same length, is nonportable.

casts are ways to evade the constraints imposed by strong typing, and they are not permitted in
Ada.

Ada does support type casts, specifically, those necessary casts between types that are related
by mapping. Type conversions are also supported between pairs of numeric types such as integer
and real. These conversions must be invoked explicitly, using the same syntax as for type casts.
But, unlike C, Ada does not support unrestricted casts from any type to any type. Thus the pointer
trick will not work in Ada.

This surely increases both the readability and the portability of Ada programs. Type changes
must be explicitly stated, eliminating confusion about intent. By eliminating free union types,
access to the actual bit-level implementation of Ada objects is shut off, forcing programmers to
write implementation-independent code. The cost is that flexibility to do some useful things is lost.
The advantage is more reliable code.

Exercises

1. What is a domain?

2. How were implicit domains represented in early computer languages?

3. What is a predefined domain? Which ones were supported by the original FORTRAN? What
determined the domain of each variable?

15.7. EVADING THE TYPE MATCHING RULES 485

4. How did ALGOL enrich the domain structure of previous languages?

5. Why is “typeless” sometimes used as a synonym for “dynamically typed” language?

6. When is the domain of a variable tested in a dynamically typed language? Why is it tested?
Why is it tested at that time?

7. Can function applicability be controlled in dynamically typed languages? Explain.

8. Why can early C be considered a weakly typed language?

9. Why were domains given increasingly important roles as programming languages developed?

10. What is a subrange declaration? Why is it useful?

11. How has Ada enhanced the use of domains beyond Pascal?

12. What is type checking?

13. Briefly define strong typing, and explain how it can be, at the same time, a boon and a
burden.

14. How has the definition of “strongly typed language” evolved?

15. What is an ADT? Why can’t we define an ADT in C or Pascal?

16. What is an external domain? Internal domain?

17. What are internally merged domains?

18. What are the problems associated with internally merged domains?

19. When a new domain has been mapped onto an old one, is the semantic intent of the two
domains identical? Why or why not?

20. Name two domains whose semantics are totally different, even though they are both sometimes
represented as integers. Give an example of two values that might be represented by the same
integer.

21. Why is Pascal considered a strongly typed language? Explain.

22. What is a “type constructor”? Give an example. How does a type constructor permit the
programmer to define new domains?

23. Why are some domains which have the same structural description considered incompatible
in Pascal?

24. What is the role of a typedef declaration in C?

486 CHAPTER 15. THE SEMANTICS OF TYPES

25. How does Ada improve upon the type structure found in C and Pascal?

26. What is a type cast? Conversion? Coercion? Give an example of each in a language that is
familiar to you.

27. For each of the following kinds of type “conversions”, say whether the original and converted
objects represent the same thing and whether the representation (bit pattern) is changed.

a. integer to real

b. The result of an addition used as a truth value

c. long integer to short integer

28. Give and explain an example of automatic type conversion destroying the semantics of an
object. The example may be drawn from any language that uses automatic conversion, but
please say what language you are using.

29. What is an encoding conversion? Size conversion? Reference conversion?

30. Name two domains that contain some elements that have the same meaning. As an example,
show a pair of values that correspond.

31. Explain the following statement: A conversion involves a run-time computation, but a cast
happens entirely at compile time.

32. A data value in one domain is changed to a corresponding value with the same (or similar)
meaning in a second domain. Is this a conversion or a cast?

33. Consider the Pascal statements given below. What semantic action is implicit in this frag-
ment?

jj: integer;

ff: real;

begin

ff := 3.0

jj := 1;

ff := ff + jj;

end

34. Would the following code in Ada (analogous to the Pascal code in question 33) be legal? Why
or why not?

rr: float := 3.0;

jj: integer := 1;

begin

rr := rr + jj;

end

15.7. EVADING THE TYPE MATCHING RULES 487

35. What is the difference between a promotion and demotion cast?

36. Why are casts considered dangerous operations?

37. Consider these equivalent expressions, where b is an integer:

In APL: 8 > b > 3

In C or Pascal: 3 < b < 8

The Pascal expression causes a compile-time error. What is it?

38. The APL and C expressions in question 37 will compile and run without errors. Evaluate the
expression in either language using the value b = 2. What semantic distortion is committed
by the translator that causes the result to be different from the programmer’s apparent
semantic intent? Why does it not produce a type error in these languages?

39. APL objects retain their type tags on the stack, and data types are checked by all primitive
operators (unlike FORTH). Nonetheless, because statement labels are mapped onto integers,
APL will sometimes execute code that is semantic nonsense and would be identified as a type
error in other languages. Give an example of code that is legal in APL but that computes
nonsense. Explain briefly what semantic error is being made. (Note: The fact that identifiers
do not have types is not a semantic error.)

40. Explain what the semantic problem can be when a language applies two-way automatic
conversion between a user-defined data type and the primitive data type used to represent it.

41. Explain or give an example of one way that C will permit a programmer to make a semantically
absurd calculation.

42. Describe or give an example of a situation (other than that described in answer to questions
37 and 38) that would cause a compile-time error in Pascal but that would be legal at compile
time in C.

43. Describe or give an example of a situation that would cause a run-time error comment in
Pascal but that would not be considered to be an error in C.

44. Give an example of an error that Pascal cannot identify at compile time but will identify at
run time. Why can’t this error be identified at compile time?

45. What is meant by a conservative conversion?

46. When does a translator attempt to coerce an argument?

47. Why is size coercion essential in the use and efficiency of computer languages?

48. When are encoding coercions used?

488 CHAPTER 15. THE SEMANTICS OF TYPES

49. In what sense is automatic dereferencing a downward coercion?

50. Why is it sometimes necessary to evade type compatibility rules?

51. Give an example of a “loophole” in a strongly typed language.

52. How have Ada designers created a semantically “safe” language?

53. Because FORTH objects lose their types when they are put on the stack, FORTH permits the
programmer to violate the semantic intent of these objects, either by accident or on purpose.
Explain and give an example of such a violation.

54. Happy Hacker is using a version of FORTH in which integers occupy 4 bytes. He has extended
the semantics of the language to include a new type declarator, REALVAR, for real (floating-
point encoding) variables, each taking 4 bytes. Happy wants code to compute the same
function as in the Pascal code in question 33, and has written this:

1 VARIABLE JJ

3 REALVAR FF

FF @ JJ @ + FF !

Would this code work? If so, what answer would be left in FF? If not, why not?

Chapter 16

Modules and Object Classes

Overview
For clarity and easy debugging, a small program should be written as a collection of
functions. However, use of subprograms alone is inadequate for a large, complex system.
Encapsulated modules were developed as tools for managing team efforts and complex
tasks. An encapsulated module is bigger than a function definition, yet smaller than a
program. These modules facilitate the creation of code libraries, separate compilation,
the grouping of logically related elements for the implementation of abstract data types,
the sharing of public data, and the protection of private information.

Separately compiled C files, Ada packages, and object classes in C++ are three strate-
gies for achieving modularity. Before module-related facilities were included within
programming languages, files and separate compilation were used to achieve the goals
of modularity. In a modularized C program, an object or function in one file can be
shared by a program in another file by using an “extern” specification, and kept pri-
vate through the use of the keyword “static”. The operating system’s linking loader
completed the connections among the program’s parts. An automated method, the
makefile, was invented to make linking UNIX applications easier and more foolproof.

Packages in Ada provide the framework to group the variables and functions of an
abstract data type. A package consists of a header which declares shared data and a
body which defines private symbols and the ADT functions. Unlike C, Ada’s goals of
modularity are achieved from within the language.

In C++, the class serves a similar role as the package in Ada. Classes contain both
functions and data. C++ also allows classes to be constructed in a hierarchical fashion
so that they are related to each other and can inherit data and functions. Within a

489

490 CHAPTER 16. MODULES AND OBJECT CLASSES

Exhibit 16.1. Terms for modules.

C a separately compiled file
Ada package

Modula module

CLU cluster

C++, Simula, Smalltalk class

class, the definition of a function is called a method. The C++ class is a template
that must be instantiated by the use of the class name in a declaration. The result is
an object whose fields will be initialized if the class contains an initialization function
called a constructor.

Some relationships among classes are difficult to achieve using only public and private
parts. There are times when we would like parts shared with some modules but not all.
C++ provides a solution for this problem: a class or a function may be declared to be
a friend of another class. Access is then shared by the parent class and the friend class.

16.1 The Purpose of Modules

It is universally accepted by computer scientists that programs should be designed and implemented
in a modular fashion. For small programs, this merely means that a program is written as a
collection of function calls. Each function definition must be short, its purpose clearly defined, and
its interface clearly declared and documented. Global variables are avoided in order to minimize
unwanted interaction between functions and side effects.

When writing large systems programs, though, this basic modular methodology is helpful but
inadequate. The complexity of a large system is so great that it must be organized as something
other than a list of thousands of function definitions. Another level of program structure is needed so
that things that belong together can be grouped and isolated from all possible outside interference.
The semantic bases of many modern languages have been extended to support a unit that is larger
than a single function but smaller than a program. Such units are called by varied names [Exhibit
16.1] but have similar purposes and properties, which we examine here. Sample modules are given
in Ada and in C++.

Encapsulated modules were developed in response to several needs that have been mentioned
earlier. These are:

• To facilitate separate compilation and creation of code libraries.

16.1. THE PURPOSE OF MODULES 491

• To enable the logical grouping of type declarations and relevant representation-dependent
functions.

• To support implementation-independent abstract data types.

• To implement private information (static local data).

• To implement controlled, nonhierarchical sharing of data.

Grouping Logically Related Elements. A module provides a framework for grouping together
a set of related functions and is thus an ideal way to implement an ADT. Within the module, the
details of the implementation and functions are defined that access specific fields in the represen-
tation. The module must include all representation-dependent functions that are needed to use
the ADT domains. These can be written, compiled, and tested in relative isolation. The ADT
functions often call each other and might use information that is private within the module. Their
interdependence is documented by their inclusion in the same module. The array_stack, defined
in Exhibit 15.9, is a good example; in Section 16.3 we give an implementation of this ADT in Ada.

Sharing Public Facilities. To be useful, a module must have some functions or data objects
that are public and can be accessed by other parts of the program. These symbols are “made
known” to other modules, on demand. If a program, P , wishes to use a module, M , then P must
contain a command to include M . Then within P , the public symbols in M can be referenced.

Protecting Private Information. An encapsulated module contains declarations for types,
functions, and data objects. These declarations are separated into two groups, of public and private

symbols. Public symbols may be accessed by other modules and form the interface between a
module and the rest of the world. In an ADT implementation, the ADT functions would be
declared to be public symbols, so that other parts of a program could call them. In addition, the
module might contain private functions which are called by the ADT functions but cannot be called
from outside the module.

The array_stack ADT is particularly simple and does not require any locally defined types.
To implement more complex ADTs, however, we must be able to make private type declarations.
Having the possibility of internally defined types also enables the representation of the ADT to
be changed easily, simply by changing the private type declaration. The effects of that change
are limited to the scope of the module definition. Once the module’s functions are redefined to
work on the new representation, all code that depends on those functions would automatically
work. For example, suppose a module were used to define a stack, and the representation chosen
initially was an array. Later, it became clear that a linked list representation would fit the data
characteristics better. To make this change, the data type of the stack storage and definitions of
the stack functions (all within the module) would have to be changed. However, when the outer
program called push or pop, the call would function as expected and store or return a value. The
caller would never know that the representation of the ADT had been changed.

492 CHAPTER 16. MODULES AND OBJECT CLASSES

A module must provide for private data. Many large systems have modules that operate as
coroutines, acting asynchronously to carry out a set of related concurrent tasks. For example, an
application that uses dynamic storage allocation will often have a separate memory management
module which gets storage from the operating system in efficient quantities and manages lists of
new and freed cells. I/O buffering and caching are done by coroutines. To support coroutines we
need private data objects with a static lifetime that can be shared among all the functions in the
module. These must be created and initialized when the module is first entered.

Often, a group of private data declarations can be used in a module in place of a single object
of a record type. In Pascal, for example, a stack is usually implemented as a record consisting of
an array of data slots and an integer top-of-stack subscript. We declare a record data type with
these parts so that a stack can be passed around as one coherent argument. However, when we
implement a stack module, the stack-data-object is internal to the module, and within the module
it is global to all the module’s functions. It is not passed anywhere as a parameter. In such cases,
there is no real advantage to gathering the two parts of the stack into one record.

The data parts of the ADT would be declared in the private part of the module. Private symbols
can be used only within the module; we say they are hidden within it. In an ordinary function,
the local variables are similarly hidden. However, local variables cannot do all that is needed.
By concealing the data-parts of the ADT, we force the programmer to access them only through
the ADT functions. The nature, type, extent, and value of all private data is concealed from the
program outside the module. This organization forces the programmer to use an implementation-
independent coding style, making the entire package easier to debug and modify.

Implementation Strategies. We will examine three basic strategies for achieving modularity
that are in common use:

1. C’s separately compiled files.

2. Ada packages.

3. Object classes in C++.

16.2 Modularity Through Files and Linking

Before module-related facilities were included within programming languages, files and separate
compilation were used to achieve the goals of modularity. This was not an altogether satisfactory
solution, since it relied on the operating system environment, specifically the linker, to complete
the connections among the parts of the program. The structure of the application as a whole was
not expressed anywhere within the program code! Instead, the user determined this structure by
telling the system linker which modules to include.

Giving complex commands to a linker is error prone and cumbersome, so an automated method,
the makefile, was invented for linking UNIX applications. Currently, several systems support some
kind of “make” facility. The example we give and explain here is written in ANSI C and UNIX.

16.2. MODULARITY THROUGH FILES AND LINKING 493

Exhibit 16.2. Header file: “modules.h”.

/* Set this constant to the number of data items in your array. */

#define LEN 4

/* Set these definitions to the desired data type and format specifier. */

/* NUMBER must be defined to be a standard numeric type. */

#define D "%ld"

typedef long int NUMBER;

extern NUMBER reduce(NUMBER (*)(), NUMBER)

A modularized program in C consists of four or more files. We list their purposes here, then
examine an example of each written in C. The files are as follows:

• A makefile, which represents the entire program. It lists the components and describes how
each depends on the others. The contents of this file are not C code. Rather, they are
operating system commands, interpreted by the system’s “make” facility. When you “make”
a program, any necessary compilation and linking is done, according to the instructions given
in the makefile. The result is a machine-code module that is ready to load and run.

• A header file, containing declarations and definitions of symbols that must be shared by two
or more code modules in order to attain consistency.

• A main module, containing the main program, where execution begins. Any declarations in
the main program are local to it and are not shared by other modules.

• One or more modules containing functions that are called by main. These share the header
file with main, but are compiled separately and may contain private declarations of any sort.
These modules often are used for coroutines that handle buffering and storage management.

Library Packages

We present a short interactive C application consisting of four files to show how the parts of an
application are written and combined. The header file [Exhibit 16.2] must be included in the other
files when they are compiled; note the #include statements at the top of Exhibits 16.3 and 16.4.
A header file provides a way to coordinate the assumptions made in the code modules. In this
example, the code modules both need to know the length and base type of the arrays that will be
processed. Using the particular constant definitions in Exhibit 16.2, we would work with arrays of
four long integers and print the answers out in a “%ld” (long decimal) format field. However, we
could change these three declarations to handle any other length and base type. For example, to
work with arrays of ten floating-point numbers, we would edit the header file to say:

494 CHAPTER 16. MODULES AND OBJECT CLASSES

Exhibit 16.3. Main module: “sumup.c”.

#include <stdio.h>

#include "modules.h"

/* This constant is the number of array operations that are defined. */

#define OPS 6

NUMBER fi_plus(a, b) NUMBER a, b; {return a + b;}

NUMBER fi_times (a, b) NUMBER a, b; {return a * b;}

NUMBER fl_or(a, b) NUMBER a, b; {return a || b;}

NUMBER fl_and(a, b) NUMBER a, b; {return a && b;}

NUMBER fb_or(a, b) NUMBER a, b; {return a | b;}

NUMBER fb_and(a, b) NUMBER a, b; {return a & b;}

static NUMBER (*op_ar[OPS])() = {fi_plus,fl_or,fb_or,fi_times,fl_and,fb_and};

static char *label[OPS] = {"plus ", "logical or ", "bitwise or ",

"times ", "logical and", "bitwise and"};

main()

{ /* Header file must define NUMBER to be a standard numeric type. */

NUMBER ar[LEN]; /* Declare an array of numbers. */

NUMBER *ar_last = &ar[LEN-1]; /* Mark the last slot of the array. */

NUMBER *p; /* A scanning pointer for the array. */

int k; /* An index for the function array. */

puts("This program demonstrates some whole-array operations.\n\n");

do {

printf ("Please enter %d integers separated by spaces.\n", LEN);

p=ar; /* Start input at head of array. */

while(p<=ar_last && scanf(D, p)==1) ++p;

if (p <= ar_last)

printf("Premature EOF or conversion error; job terminated.\n"),

exit(1);

while (getchar()!=’\n’); /* Flush rest of input line. */

putchar (’\n’); /* Prepare for output. */

/* Apply each operation in the op array to the number array. */

for(k=0; k<OPS; k++)

printf ("%s "D"\n", label[k], reduce(op_ar[k], ar));

printf("\nDo you want to enter more data? (y/n)\n");

}

while (getchar() == ’y’);

}

16.2. MODULARITY THROUGH FILES AND LINKING 495

Exhibit 16.4. Subroutine module: “reduce.c”.

#include "modules.h" /* a */

NUMBER reduce(NUMBER (*op)(), NUMBER ar) /* b */

{ int k;

NUMBER sum; /* c */

sum = ar[0];

for(k=1; k<LEN; k++) sum = (*op)(sum, ar[k]); /* d */

return sum;

}

#define LEN 10

#define D "%f"

typedef float NUMBER;

Note the extern declaration for the function reduce. When this line is included in the main
module, it tells the compiler two things:

• The reduce function is defined in another module.

• It takes two arguments, a pointer to a function and a number, and returns a number.

This information permits the compiler to compile correct and meaningful calls to a function it has
never seen.

/subsubsectionKeeping Private Information
In a modularized C program, a programmer can create both shared functions and private

functions by judicial use of header files and “static” declarations. The modifier “static” is the
opposite of “extern”. The keyword extern is used to denote an object or function that is to be
shared by other modules, while static denotes a private item. A global symbol (function or data
object) that is not declared to be either one is extern.

The main module, shown in Exhibit 16.3 is intended only as a demonstration of how the parts
of a modularized program work together.1 It sets up an array of integers, then sends the array to
reduce to be processed, in turn, by each of six dyadic integer functions. Finally, it prints all the
answers and queries the user about more data.

Sharing Information

The subroutine module shown in Exhibit 16.4 contains the function reduce.2 This performs a
“running operation”, using whatever dyadic function is passed to it as an argument. For example,

1This main program is for demonstration purposes—it does not do anything that is particularly useful.
2Compare the syntax for functional parameters in C to the Pascal syntax shown in Exhibit 9.29.

496 CHAPTER 16. MODULES AND OBJECT CLASSES

Exhibit 16.5. The makefile for the sumup program.

sumup: main.o reduce.o

cc -o sumup main.o reduce.o

main.o: main.c modules.h

cc -o main.o main.c

reduce.o: reduce.c modules.h

cc -o reduce.o reduce.c

if the argument operation is “+”, reduce computes the running sum: a[0] + a[1] + a[2] + ...

+ a[n]. If the argument function is “*”, the answer is the “running product”.
Note that this module includes the header file (line a). Thus the local variable, sum, (line c),

will be type long or short or integer or float, whichever is selected in the header file. The important
thing is that it will be the same type as the array elements created in main, and an appropriate
type for the function argument. Each time the header file is modified, both the subroutine module
and the main module, which depend on it, must be recompiled.

The type declaration “NUMBER (*op)()”, in the header of reduce, declares “op” to be a pointer
to a function that returns a NUMBER. We can refer to this function through the pointer by writing
its name with a dereference operator: “(*op)”. Thus line d calls the function which was passed
to reduce as an argument. The arguments to that function are the current partial sum and the
current array element.

Defining the Application

The #include commands in the two code modules express the relationship among the three files,
but not in a coherent way. By reading all the files, a user could deduce the relationship, but
that relationship is not presented in a single place or in a way that is convenient to process.
Although the problem is small for a program with only two code modules and a header, it can
become considerable with a large many-module application. The UNIX “makefile” makes the
relationships and dependencies explicit. A makefile is a file of executable system commands; the
example shown here contains UNIX commands to compile and link a program.

The makefile is the root of a tree of files that comprise the application, and it is the basis of an
automated version-control system which serves two purposes:

• The most recent version of every file involved will be used to construct the executable module.
No object module will be sent to the linker if a corresponding source or header file has been
modified after the last compilation for that module.

• If any step in the compiling and linking process is unnecessary, it will be skipped. No compiling
or linking operation will ever be redone unless the files on which it depends have been modified.

16.3. PACKAGES IN ADA 497

A makefile explicitly defines how the final application depends on separately compiled object mod-
ules, and how each of these depends on source code and header files. In our example [Exhibit 16.5],
the first line tells the linker that the finished program will be called “sumup”, and that it can be
produced by linking two user-created object files, main.o and reduce.o. (The object files that
belong to the C library do not need to be listed.) The third and fifth lines define the source files
on which the two user-defined object modules depend.

The second line of the makefile contains a call to link the object files that comprise this appli-
cation, and to produce an executable file named “sumup”. The fourth and sixth lines contain calls
on the compiler to produce the necessary object files.3 These lines are invoked only when needed.
The make facility checks the date-last-modified on source files, object files, and executable files. If
a linked module already exists, and none of its component object files have been modified or need
modification, the linker can return immediately without wasting the effort to redo a job that is
already done. An object file needs to be recompiled if any of the source files on which it depends
have been changed since the creation time of the object file. These dependencies are defined by
the last two lines in the makefile, where we see that the object file main.o depends on main.c and
modules.h, and, similarly, reduce.o depends on a code module and a header module. If one of
these three files were modified, the relevant object module or modules would be recompiled.

To use a makefile, that is, to compile and link the program, the programmer simply says “make”,
or “make sumup”. (The longer form is needed if the user’s file directory contains makefiles for more
than one application.) Any source module that has been edited since the last call on make will
be recompiled, then the object modules will be linked, and the result stored as an executable file
named sumup. To run the compiled program, the programmer will say “sumup”.

Makefiles, separate compilation, and declarations for external and static symbols thus combine
to provide a language/system that achieves the goals of grouping, sharing, and protection.

16.3 Packages in Ada

Grouping Related Elements

Packages in Ada provide a framework under which to group together the variables and functions
of an ADT, uninterrupted by unrelated variables and code. A package has much better lexical
coherence than a comparable set of definitions in Pascal. An Ada package has a header, which de-
clares all the externally visible symbols, and a body, which can include type definitions, static local
variables, definitions for the publicly accessible functions, and private local functions. We will show
how an Ada package definition can be used to implement the ADT array_stack [Exhibit 16.6].4

This package contains definitions for a stack representation and the representation-dependent stack
functions, PUSH, POP and TOP.

3These two lines are not strictly necessary because they only state explicitly what the system would do by default
if no compile commands were given.

4In Chapter 17 we show how a package can be embedded within a generic framework which allows for varying the
base type of this ADT.

498 CHAPTER 16. MODULES AND OBJECT CLASSES

Exhibit 16.6. Defining a stack package in Ada.

-- The package header declares the externally visible symbols of the ADT.

package STACK is

function PUSH(k: integer) return boolean;

function POP return integer;

function TOP return integer;

end STACK;

-- The package body defines private symbols and the ADT functions.

-- The private variables cannot be referenced outside this package.

package body STACK is

STKLEN: constant:= 10;

stk: array(1..STKLEN)of integer; -- static local storage.

tos: integer range -1..STKLEN; -- Negative 1 is an error code.

-- These functions can be called from outside the package because they

-- have been declared as external symbols in the package header.

function PUSH(k: integer) is

begin

if tos<STKLEN then

tos:=tos+1; stk(tos):= k;

return true;

else return false;

end if

end PUSH;

function TOP return integer is

begin

if tos >0 then return stk(tos);

else return SYSTEM.MIN_INT; -- Use value from the package SYSTEM.

end if;

end TOP;

function POP return integer is -- Remove & return top stack item.

ans: integer;

begin

ans:= TOP; tos:=tos-1;

return ans;

end POP;

-- This code is run at load time, and initializes the package data.

begin

tos:=0;

end STACK;

16.3. PACKAGES IN ADA 499

Sharing Public Facilities

Any symbol declared in the header of an Ada package can be shared by other modules. In our
example, this includes the functions PUSH, POP, and TOP. To use an Ada package, the programmer
writes a with command within the main program [Exhibit 16.7]. Having done this, one can refer
to a part of that module by its complete name: the module name followed by the function or data
name (see the left side of the exhibit). Using complete names avoids a possible problem caused by
using the same identifier for parts of different modules.

Because packages are used extensively in Ada programs, this syntax for naming the parts of a
package becomes annoying. Ada provides an alternate syntax that can usually be used and is more
convenient. Using the use command causes all the public names in a package to be included with
the local symbols in the calling program, eliminating the need to use the module name in every
reference (see the right side of exhibit).5

By selectively including modules where they are needed, we can construct a nonhierarchical
sharing structure. Each part of a program can be given access to exactly those other parts it
needs. The possibility of many kinds of unintentional interactions between functions and data can
be minimized, and the resulting software becomes easier to debug and maintain.

Private Information

Any symbol declared in the package body but not listed in the header is private and can only be
accessed from within the package. In our Ada example, the stack-array and the stack-pointer are
declared as pieces of private data, and the length of the stack is a private constant [Exhibit 16.6,
lines 10 to 12]. The stack-pointer (tos) and the array (stk) are not grouped into a record-object,
as they would be in Pascal, because there is no advantage to that grouping. The two variables
are global within the package and invisible outside it, so they will never be passed anywhere as
arguments.

Private variables declared in a package are static; that is, the value computed during one
activation of a stack function remains until the next stack function is called. Package variables
are not deallocated when control leaves the package, and they are not reinitialized when control
returns. This permits the programmer to declare protected, local objects that can be used globally.
This system is a tremendous improvement over the way similar problems must be handled in Pascal.
In a Pascal program, data structures that are to be used throughout the program must be declared
globally. They are usually initialized by the main program at the beginning of program execution.
Pascal provides no way to protect the data structures from the rest of the program, or to ensure
that they are accessed only through the proper functions.

Many variables and most data structures must be initialized when they are allocated. If a data
structure is local and private within a package, the package itself must initialize it. The code on
the last three lines of this Ada package serves this purpose [Exhibit 16.6]. At load time, before

5Much like the “with” command in Pascal.

500 CHAPTER 16. MODULES AND OBJECT CLASSES

Exhibit 16.7. Using an Ada package.

Basic Syntax:

with STACK;

procedure MyJob is

...

STACK.push(MyValue);

Sugared Syntax:

with STACK;

use STACK;

procedure MyJob is

...

push(MyValue);

beginning to execute the main program, storage is allocated for all private variables in all included
packages. The “main” initializing code in each of these packages is then executed.

Comparison to C

The goals of grouping, sharing, and privacy are achieved much the same way in an Ada package as
they are in a C module. The primary differences between the two systems is that Ada packages have
been brought entirely within the Ada language, whereas the C system relies on using a command
file that is outside the C language.

16.4 Object Classes.

In object-oriented languages, the class serves much the same roles as the package does in Ada: it
organizes things that belong together and allows for private information. In addition, the classes
can be constructed so that there are hierarchies of classes, all related to each other.6 The best-
known object-oriented languages are Simula, (the first object-oriented language), Smalltalk, and
C++. In all of these, a class may contain data fields and functions, which we will call members of

the class. Like Ada packages, classes may have private and public members.
Terminology varies somewhat among these languages. The term method was invented for

Smalltalk,7 and it means one definition, in one class, for a function. This term is useful, and
we will use it whenever we need to distinguish between an entire function and a single definition for
that function. A function name represents a conceptual process. A class function might be (and
usually is) given different (but related) method definitions in various parts of a class hierarchy.8

Terminology used for function definitions and calls is also variable. Simula has procedures, C++
has functions, and Smalltalk has messages. In Simula and C++, we speak of calling a procedure or
function, while in Smalltalk we “send a message to an object”. In this discussion, we will use the
terms “function” and “function call”.

6See Chapter 18.
7This term is not generally used in describing Simula and C++.
8Virtual functions are covered in Chapter 18.

16.4. OBJECT CLASSES. 501

Exhibit 16.8. Defining a class in C++.

class char_stack { // Here are the private parts of the class.

int size;

char *tos, *end;

char* s;

public: // All remaining symbols are public.

char_stack(int sz) // This is the class’s constructor.

{ s=new char[size=sz]; // Allocate an array of sz chars.

tos=s; // Initialize top to point at first char.

end=tos+(size-1); // Mark last slot in stack.

}

∼char_stack() { delete s; } // This object destructor is used when

// control leaves the object’s scope.

int push(char c) // Return 0 if stack is full.

{ return (tos<=end ? (*tos++ =c) : 0); }

char pop() // Return null char if stack is empty.

{ return (tos>s ? *--tos : ’\0’); }

char top();

}; // End of class char_stack.

char char_stack::top() // Return top but don’t pop.

{ return (tos>s ? *tos : ’\0’); }

16.4.1 Classes in C++

For the rest of this discussion, we will focus attention primarily on the semantics and syntax of
C++, since it promises to become the most widely used object-oriented language.

A C++ class has the same elements as an Ada package, and it is declared with similar syntax.9

A sample class, named char_stack”, is defined in Exhibit 16.8. It has four private data-members
and four public function-members.

9In C++, a “struct” data type is also a kind of class. It may contain function declarations, and any struct

declaration actually defines a class. However, it is a class with no private parts. The difference between a struct

variable and a class variable is the accessing restrictions on the private data and functions. We will limit further
discussion to classes declared as class.

502 CHAPTER 16. MODULES AND OBJECT CLASSES

Exhibit 16.9. Instantiating a C++ class.

main ()

{ char c;

char_stack stk1(100); // We can instantiate a class more than once,

char_stack stk2(10); // and get multiple copies of the objects.

...

stk3 = new char_stack(20);

stk1.push(’#’); // We must specify which "push" to use.

stk2.push(’%’);

c = stk2.pop();

}

Instances and Naming

A C++ class is a template, like a type declaration in Pascal, and must be instantiated to create
objects. To instantiate a class, you use the class name in a declaration, as you would use a Pascal
type name. The result of instantiation is an object, which is represented by a record-type storage-
object with one field for each of the class variables. Those fields will be initialized if the class
contains an initialization function.

When we instantiate a class, we bind the resulting object to a name. The object’s name is used
to refer to both data fields and the function members. For example, in Exhibit 16.9, the object
stk1 is an instance of the C++ class char_stack, and it has the function-members stk1.push and
stk1.pop and the data members stk1.size, stk1.top, stk1.s, and stk1.end.

Within the context of the class, the members may be referenced by using a simple name. A
public member can be referenced outside the class using a dotted notation:

〈class_name〉.〈function_name〉 (〈argument_list〉)

For example, the last three lines in Exhibit 16.9 call functions defined in the class char_stack.

The Implicit Argument. When we call a function that is a class member, we must specify
which instance of the function we are calling. To do this, we write an object name followed by the
member function name. (In Smalltalk, these are separated by spaces, while Simula and C++ use
dotted notation, as in Exhibit 16.9.) The data members of an object do not need to be passed
as arguments to the function members: each function may operate on the data fields of its own
instance. Thus the record of data-members is an implicit argument to all of its function members.

As a result of having an implicit argument, each class function needs one fewer explicit argument.
However, the name of the object that includes both the function instance and the implicit argument
must be specified as part of the function name. To a programmer accustomed to traditional
languages, such as Pascal, this looks like writing the name of the first argument on the left side of

16.4. OBJECT CLASSES. 503

a function name instead of on the right side with the rest of the argument list. For example, in
Pascal, the name stk1_stack would be written as part of the argument list to push or pop, but in
an object-oriented language it is written as part of the name of the function [Exhibit 16.9].

Having an implicit argument leads to one difficulty. Unlike an explicit argument, the syntax
provides no way to give a local name to this record. Yet some functions, particularly recursive
ones, must refer explicitly to the implicit argument. This problem is solved by a keyword that can
be used to refer to any implicit argument. In Smalltalk, the keyword is self. In C++, the keyword
“this” refers to a pointer to the implied argument.

Implementation

Classes contain both functions and data. The functions are declared within the class definition and
may be either public or private. Theoretically, a “copy” of each class function is made each time
the class is instantiated. The newly instantiated functions are part of the new class-object and are
the only functions that have access to its private data fields. In practice, though, there is no need
to duplicate the code of the class functions for every class instance. Thus an instance of a class can
be implemented by a record variable with one field for each class data-member. This differs from
an ordinary record-type variable because the access to the private fields is restricted to member
functions.10 Initialization is done by a member function called a constructor, which must have the
same name as the class.

Constructors and Initialization. Each class may contain a set of constructor functions.11 A
class variable may be created in a declaration or by using the new operator, which creates a storage
object dynamically. In both cases, a constructor function is called to initialize the new object.
Like Ada (see Exhibit 14.28), C++ permits the programmer to call a constructor function in an
expression to create a pure value of the class out of its components.12 This is often done inside
a function to create a return value of the new type, and it is also used in declarations to create
appropriate initializers.

Constructors are ordinary functions, with or without parameters. The only restriction is that
all the constructors in a class must have different types of argument lists.13 If a constructor has
parameters, an argument list must be supplied in a declaration, a call on new, or in an explicit
call on the constructor. Exhibit 16.9 creates three instances of the class char_stack with different
arguments and binds them to the names stk1, stk2, and stk3. The class char_stack must have
a definition for its constructor which takes an integer argument. This function is freely definable
and can perform any appropriate initialization.

10A Simula class has an associated “main procedure”, like that in an Ada package, which is called when a class
object is constructed to initialize it.

11In current terminology, the name of the constructor function may be “overloaded”.
12Review Chapter 14, Section 14.3.1.
13The power of C++ constructors goes well beyond initialization, and will be further developed in Chapter 17.

504 CHAPTER 16. MODULES AND OBJECT CLASSES

A C++ class may also have a destructor function, which does the opposite of the constructor
function. If a destructor is defined for the class, it is invoked automatically at block exit to dispose
of any class instances that were created at block entry or during execution of the block. This
permits automatic recovery of storage locations that were created using new, a major improvement
over C and Pascal.

Function Declarations and Definitions. A function is a class member if it is declared within
the class. Remember that a function declaration is simply a header line—stating the return type,
the function name, and the argument types. Compare the C++ code in Exhibit 16.8 to the Ada
code in Exhibit 16.6. Ada requires the programmer to write each function declaration twice: once
to declare whether it is public or private, and once with the definition. C++ syntax is simpler.
It permits the function definition either to follow the declaration immediately, or to be given
elsewhere. Practical considerations determine whether the definition should be with or separated
from the declaration. Definitions written with the declaration are expanded as an in-line code; that
is, the translator replaces each function call, in line, by a new copy of the compiled code for the
function. All the time and space overhead of stack frames, jump-to-subroutine, and subroutine
return is avoided.

If a member function is declared but not defined in a class, its definition must eventually be
given; often, this is done just after the end of the class. Defining a method outside the class does
not affect the status of the method as a class member. The method still has member’s access rights.
The difference is practical, not semantic; functions defined this way are compiled separately using
the ordinary function call and return mechanism.

Giving a definition outside its class has one affect on syntax. Because some functions have
multiple defining methods, we must specify the full name of the method when we define it, so that
the compiler can tell with which class the method belongs. To denote the full name of a method
we use the scope resolution operator, “::”. It can be used in dyadic or monadic form:

〈class_name〉::〈function_name〉(〈argument_list〉)
::〈function_name〉(〈argument_list〉)

Thus the full name of the method for pop in the class char_stack is char_stack::pop, and the
constructor function for the class is char_stack::char_stack.

Denoting a Single Method The meaning of the scope resolution operator, “char_stack::push”,
is easily confused with the dotted notation used in a function call,“stk1.push”, but they do not
mean the same thing. The first notation denotes a particular method which is a member of a
particular class. Every reference to a method outside its defining class must be written using “::”.
Methods in programmer-defined classes are denoted using the dyadic “::”, and globally defined
methods are denoted by using “::” in its monadic form.

In contrast, the dotted notation is used refer to a function, not one of its methods. It is
important to be able to denote a single function method, as opposed to the entire function, which

16.4. OBJECT CLASSES. 505

Exhibit 16.10. A represented domain in C++.

class imag

{ im: float;

operator float() { return im; }

public:

imag(){ im=0.0; }

imag(float f){ im=f; }

friend imag operator+(imag a, imag b){imag(float(a)+float(b)); }

friend float operator*(imag a, imag b){ -1*(float(a) * float(b)); }

} // Operators + and * are friends of this class.

is a collection of methods. A function call must be dispatched,14 while a method may simply be
called directly. The dotted reference “stk1.push” means “Start with the object stk1. Run the
function dispatcher to select the most appropriate method for the function “push”, then call that
method with stk1 as its implied argument.” If no method for push is defined in the class of its
implied argument, some other method, higher in the class hierarchy, will be dispatched.

The most common reason for using a method name instead of a function name is that one
method for a function is being defined in terms of another. The philosophy of object-oriented
programming dictates that we should be able to use a single function name for both old and new
methods, so long as they implement a common external function. For example, a customized
printing function might be defined for a user-defined type by making several calls on one of the
predefined print functions. Within the definition of the new print method, we must be able to
denote the old method by its method name, in order to avoid a hopeless circular definition.

16.4.2 Represented Domains

Chapter 15, Section 15.4.3, discusses the problems inherent in using one domain to represent
another. Briefly, the language must allow some connection between the domains in order to permit
the programmer to define functions intrinsic to the new domain. However, once these are defined,
all further compatibility between the domains is undesirable. In Pascal, this unwanted compatibility
is unavoidable. In Ada, one-way protection is provided, as described in Exhibits 15.22 and 15.23.
In C++ we have more control over the situation.

A language with classes provides a different and much more satisfactory approach to this prob-
lem. Where in Ada, we would define a new represented domain, in C++ we would define a class
with one private data member from the old domain. The class imag in Exhibit 16.10 is an analog
of the Ada type imag defined in Exhibit 15.26. The information provided by the programmer and

14The distinction cannot be fully understood until the material in Chapter 17 is mastered. However, we give a
brief explanation here.

506 CHAPTER 16. MODULES AND OBJECT CLASSES

even the syntax are similar in the two languages. The important difference is the semantics.
No casts or compatibilities are predefined for C++ classes, so the programmer is not stuck with

unwanted ones. In return, the two casts that are needed to define arithmetic for imaginary numbers
must be defined explicitly. The first is the constructor imag(float), which changes a float value
to type imag.15 Because these two functions are private, the relationship between types float

and imag is completely hidden from the outside world, and the semantics of type imag are fully
protected. In contrast, the semantics of the Ada type in Exhibit 15.26 make the cast imag(float)
public, and make the cast float() automatic. (That is, an imag is acceptable in any context that
requires a float.)

The other cast needed in our package is one that changes an imag number to its underlying
float representation so that we may operate on it. This is the operator function named “float”,
defined in Exhibit 16.10. 16 In C and C++ syntax, a cast is (syntactically) a prefix operator, not
a function, and it is called by placing the name of the cast to the left of the expression which is its
operand. Since the name of a cast is a type name enclosed in parentheses, this looks like a function
call with the parentheses around the wrong thing. The designer of C++ gave the option of calling
any operator, including a cast, using either operator syntax or standard function call syntax. Thus
we can call operator float() either of these two ways:

float(17); float (x+2)

(float) 17; (float)(x+2)

16.4.3 Friends of Classes

The class mechanism lets the programmer impose restrictions on type compatibility, object visibil-
ity, and access to parts of objects. These restrictions are immensely powerful and can be a huge
help in achieving semantically valid programs. However, when one uses a restricting mechanism, it
is often difficult to achieve exactly the right degree of restrictions.

This is true of classes, also. There can be relationships among classes that are important but
hard to capture using only public and private parts. This gives us tree-structured sharing among
classes. However, sometimes graph-structured sharing is needed. We could say that, sometimes,
we want “semiprivate” parts: parts that can be shared with some other program modules but not
with all.

We use classes to make programs more modular and more reliable. The important semantic
mechanism for achieving these goals is accessing restrictions. The data type of a class is hidden

within the class, and other functions are forced to work through the accessing functions defined for
the class. By using this methodology, we can easily change the representation of a class without
affecting the correctness of other parts of the program. However, each function call has a cost
in time and space efficiency. Although the cost of a single function call is small, these costs add
up. The cost of doing everything through function calls can be great. When the access operation

15Conversion functions are treated more fully in Chapter 18, Section 18.1.
16The word “operator” in lines 3, 7, and 8 is a keyword.

16.4. OBJECT CLASSES. 507

itself is trivial, like the pop function in Exhibit 16.8, the cost of calling the function can exceed the
cost of executing it. Thus applying modular methodology throughout a program could introduce
unacceptable inefficiency.

Two solutions are provided in C++ for this problem: friends and in-line code. A method may
be declared to produce in-line code, like a macro, rather than a separately compiled code module. If
the method is actually defined between the begin-class and end-class brackets, it will be expanded
in-line. If it is declared inside the class but defined elsewhere, it will be compiled as a separate
code module. The semantics and syntax are otherwise the same, as is the ability to access the
private members of the class. With short functions, such as push and pop, in-line code is preferred,
because it is more time- and space-efficient than separate compilation. For long functions, in-line
code would still be faster, but it could make the compiled program much longer if there are two
or more calls on the function. Thus in-line compilation is a bad idea for moderate-length and long
functions, and separate compilation is more commonly used.

The friend mechanism can also be used to avoid the inefficiency involved in constant calls
to trivial functions. A class will share its private members with friend functions, but not with
other functions. Friendship is given, not taken. A class declares who its friends are; a function
cannot declare which classes are its friends. The friendship relationship can be declared function-
by-function, or an entire class can be declared to be a friend, which means that all its functions are
friends.

For example, assume that we have defined two classes, “forest” and “tree”. A forest is to be
a collection of trees, in this case an array. In general though, whether it is a set, an array, or a list,
it would be hidden within the class forest [Exhibit 16.11]. Both constructors for class tree are
called by function forest::grow_tree; this would be permitted even if forest were not a friend,
because these constructors are public in class tree. However, grow_tree also sets the value field
of the new tree node it creates. To do this, it uses the member name value, which is private to
class tree. This is permitted because class forest is a friend of class tree.

Comparisons

The class mechanism in C++ differs from the Ada package mechanism in many ways. Among the
most important are the use of classes to form type hierarchies and govern function inheritance and
automatic type conversion, as explained in Chapter 17. These facilities grow directly from the fact
that the C++ class is an extension of the facility for defining record types.

The Ada package has one property, though, that is lacking in the class. A package can contain
objects, functions, and more than one type declaration. Thus if we were writing a package, both
types tree and forest would be written in the same package. Having done this, the right of forests
to access tree parts would be established. A back door mechanism, such as the friend mechanism,
is not needed to establish a relationship of “trust” between the two types.

508 CHAPTER 16. MODULES AND OBJECT CLASSES

Exhibit 16.11. Friend classes.

class tree

{ tree * l_son;

tree * r_son;

char value;

public:

tree(){ l_son= r_son= NULL; value= ’\0’; }

tree(tree *a, tree *b){ l_son =a; r_son =b; value= ’\0’; }

friend class forest;

}

class forest

{ int n;

tree woods[100];

public:

forest(){ n=0; }

forest(tree * t)

{ if(n==100) cout <<"Forest is full.";

else woods[n++] = t;

}

void grow_tree(int n, char c)

{ tree * t = new tree;

t->value = c;

forest[n] = tree(t, forest[n]);

}

}

Exercises

1. Why should programs be modularized?

2. What are the dangers in using global variables?

3. What is the purpose of encapsulating a module?

4. How can a module share data and yet protect private information?

5. How do private type declarations make an ADT representation invisible to the programmer?

6. How does C use files and separate compilation to achieve the goals of modularity?

16.4. OBJECT CLASSES. 509

7. What is the role of the makefile facility? A header file? The main module?

8. What is the role of extern and static in C declarations?

9. How did Ada and C++ extend the goals of grouping, sharing, and protection to their lan-
guages?

10. How does Ada distinguish between public and private symbols?

11. What is a method in Smalltalk?

12. A C++ class is a template. How is it instantiated? Initialized?

13. Explain two ways in which constructor function might be treated differently than other func-
tions in a C++ class.

14. What is an implicit argument? How is it used in C++?

15. What is the role of a destructor function?

16. What are the differences in the declaration of a function in C++ and Ada syntax?

17. What is the role of the scope resolution operator?

18. How does C++ give the programmer more control than Ada over semantics and compatibility
when using one domain to represent another?

19. What is the role of a friend class?

20. What is in-line code? When is its usage preferred? Not preferred?

21. Contrast classes in C++ and packages in Ada.

510 CHAPTER 16. MODULES AND OBJECT CLASSES

Chapter 17

Generics

Overview
Generic domains are domains which include more than one specific type of object.
They are used to express abstractions, to make code reusable, and to support top-down
programming. There are four kinds of generic domains: parameterized, subdomains,
polymorphic, and ad-hoc.

Several issues must be considered when implementing generic domains. They have
been considered in the support for generics that has been built into various languages.
The solutions vary in flexibility, preservation of semantic validity, binding time, and
efficiency. Approaches to this problem include: overloaded operators, flexible arrays,
polymorphic types, parameterized domains with instantiation, class hierarchies with
inheritance, and declarable domain relationships.

A corresponding tool for expressing procedural abstractions is the virtual function. A
virtual function is a function name, header, and description but no code. An ADT can
be represented in a programming language by a generic domain together with virtual
function declarations.

A generic function is a single abstract operation defined over a generic domain. Most
languages have a few primitive generic functions for all primitive types, which are auto-
matically extended to user-defined types. However, user-defined generic functions create
semantic problems. The code that implements any process must be appropriate for the
type of its arguments; what works for one type does not for another. The translator,
therefore, must be able to handle multiple definitions for a generic function, and it must
decide which method to use for each function call. This process is known as dispatching.

An ad-hoc generic domain has subdomains that are related by semantics rather than by

511

512 CHAPTER 17. GENERICS

structure. Definitions of a function over two specific domains with an ad-hoc relationship
may look different if they depend on representation. However, they perform the same
semantic action on objects of the different specific domains.

Many older languages support some predefined generics for forms of nonhomogeneous
domains. These include union data types, overloaded names, fixed sets of generic def-
initions with coercion, extending predefined operators, flexible arrays, parameterized
generic domains, domains with type parameters, preprocessors, and generic packages.
These are far more limited than support for generic types found in object-oriented
languages because final binding of the type parameters happens at precompile time.

17.1 Generics

17.1.1 What Is a Generic?

Chapter 15 discussed domains, type checking, and type conversions in several familiar strongly
typed languages. In these languages, types are used to define domains such that each new type
constructed, with a few exceptions, defines a distinct domain incompatible with other domains,
and each domain contains only one type of object. In this chapter we examine the ways to declare
and use generic domains, that is, domains that include more than one type of object. We see
how generic domains can be used to express abstractions, to make code reusable, and to support
top-down programming.

We say the domain of a function is specific if every argument to the function is defined to be
a single specific type. The properties of a specific domain are fully defined by the specific type
definition used to define the function, and the function makes use of these properties in order to
perform meaningful computations. The opposite of “specific” is “generic”. A function domain is
generic if some argument can be of two or more different specific types. There are four ways in
which a domain, D, may be generic:

• D may be defined by a type expression with components of an unspecified type and/or an
array with unspecified array bounds. We call such a type expression a parameterized type.
Several languages provide some support for this kind of generics. The domain it defines is a
parameterized generic domain.1

• D may have a subdomain, D′. This occurs when D is defined as a type for which subtypes
have been declared. For example, the Pascal subrange type “1..10” is a subtype of the type
integer.

1Implementations of generics over parameterized domains are discussed in Section 17.3.

17.1. GENERICS 513

Exhibit 17.1. Generic domains and functions on them.

Domain Generic Functions on the Domain

number +, -, *, /

matrix of numbers inverse, transpose, +
character string concatenation, substring
set of ? union, intersection
stack of ? push, pop, top

• D may be defined by a polymorphic type. A polymorphic type is a single type with internal
variability, like a discriminated union.

• D is an ad hoc generic domain if it includes objects of more than one specific type, such
that all of the specific types are representations of the same external domain. The semantic
relationships among these species are important, but the species are related in an ad hoc
manner, not by structure or representation. For example, the generic domain “number”
includes at least two specific domains “integer” and “real” in most languages, and the generic
domain “tree_node” can be defined to include specific types “leaf_node” and “interior_node”.
Ad hoc generics are a topic of current research interest.

Consider the domains listed in Exhibit 17.1. The domains “number” and “matrix of numbers”
are generic because they include both integers and reals. “Matrix” and “string” are generic because
their dimensions are not specified, so these types include matrices of all shapes and strings of all
lengths. “Set” is generic because the base type of the set is not specified and, therefore, sets of
reals, characters, cells, and any other type. are all included. “Stack” is generic for the same reason,
and also because the size and structure of stacks can vary.

17.1.2 Implementations of Generics

There are several ways that generic and polymorphic functions may be supported within a pro-
gramming language, but all approaches must provide answers for the same syntactic and semantic
problems. The issues to be considered include:

• What kind of generic and/or polymorphic domains may we define? Parameterized domains?
Structurally related domains? Domains with a small number of variants? Unlimited ad hoc
generics?

• How and under what conditions may we define a generic or polymorphic function? May we
define functions over generic domains?

• How do we translate calls on functions with more than one specific method? What information
is considered by the translator when it chooses a method? Can this choice be deferred until
run time or is it always made at compile time?

514 CHAPTER 17. GENERICS

• If we permit run-time type variability, is it possible to compile code with reasonable efficiency?

• How do generic domains and generic functions interact with type coercion?

• What does it mean to call a function which has a generic formal parameter? [See Exhibit
17.3] What type matching rules should apply? How can we implement such calls?

Support for generics has been achieved to different degrees for domains with subdomains, pa-
rameterized domains, and ad hoc generic domains. The solutions provided by various languages
vary in their flexibility, their ability to preserve semantic validity, their time of binding, and the
inefficiency inherent in the implementation. We will examine several approaches to this problem in
some detail.

Overloaded Operators. A few generic arithmetic operators are built into the language. A
programmer can define new methods for these operators but cannot define any new operators or
functions that are generic in the same way. Ada’s operators are an example and are discussed in
Section 17.2.

Flexible Arrays. A programmer can use array parameters whose bounds are not defined at
compile time. Either the array length must be passed as a separate parameter, or the code for the
function must work correctly for all possible values of the array length. Several older languages
support flexible arrays, including FORTRAN, C, and Pascal. These are covered in Section 17.2.

Parameterized Domains with Instantiation. The generic module is kept in the form of
parameterized source code. A preprocessor is used to instantiate the parameterized code with
actual type arguments and generate fully specific, ordinary code which is bound to a unique name
and then compiled. The programmer uses the unique name, not the generic name, in the code.
This kind of generic module is supported by Ada and can be implemented in C using macros. It is
discussed in Section 17.3.

Class Hierarchies with Inheritance. Objects belong to classes, as do function methods. The
symbol table is available at run time, and the class of the actual arguments to a function can be
examined. One name is given to an abstract function, and many methods can be defined for that
name, so long as each method is defined in a different class. A function method has one implied
argument, and the translator uses the class of that argument to determine which method to dispatch
for each function call. This kind of support for generics is present in Simula, Smalltalk, and C++.
Because generic dispatching must sometimes be postponed until runtime, these languages are at
least partly interpreted. This is discussed in Chapter 18, Section 18.2.

17.1. GENERICS 515

Polymorphic Types. The type of each symbol can be determined at run time. Functions are
polymorphic, and each part of a function definition is controlled by a predicate. These predicates
may be used to test the type or the value of the actual argument for each call. The translator
will use a powerful pattern-matching facility to determine which predicate is true and select the
corresponding action. Miranda and Haskell support this kind of generics. They are discussed in
Chapter 18, Section 18.3.

Declarable Domain Relationships. Generic function calls are interpreted, not compiled. The
type information for generic objects is kept available at run time. One name is given to an abstract
function and is used to refer to all of its methods. A generalized graph of relationships between
domains can be created or declared, and is used to dispatch functions. In a generic function call,
the arguments might be of any specific type which is a subdomain of the generic domain, according
to the graph. A function call with generic parameters translates into code that will look at the
argument types at run time and execute the function method that is most appropriate for those
types, using coercion if necessary. Examples of this approach to dispatching are drawn from C++
and Miranda and are discussed in Chapter 18, Section 18.4.

The extent to which a language supports generics is an important issue. The greater the extent,
the more flexible and adaptable a program can be at run time. The smaller the extent, the more
difficult it is to create reusable code and code libraries. Generic domains are supported to a minimal
extent in most languages, but the kind of support provided, the restrictions, and whether support
extends to programmer-defined domains and functions vary dramatically from one language to
another. Traditional typed languages such as Pascal usually have some predefined generic domains
with predefined relationships, but they lack any way for programmers to define their own generic
domains or domain relationships. For example, a general matrix multiplication function cannot be
defined in Pascal or FORTRAN because there is no way in these languages to define the generic
domain “matrix of integers or reals”.

Programmer-defined subdomains and domains with integer parameters are relatively easy to
implement and are supported in many languages. Domains with type parameters are more difficult
to implement in a strongly typed, compiled language because ordinary type checking requires that
the specific type of each function argument be known (or deduced) at compile time. Ad hoc generic
domains are the most difficult to implement because there is no structural relationship among the
variants that can be exploited.

17.1.3 Generics, Virtual Functions, and ADTs

A generic domain is an abstraction that represents the shared structural and/or semantic proper-
ties of its subdomains. Thus a language that permits programmers to declare their own generic
domains provides a powerful tool with which to express data abstractions. A corresponding tool for
expressing procedural abstractions is the abstract function, or virtual function. This is a function
name, a function header (or “prototype”), and a description of the intent of the function, with no
accompanying code. The header defines the number and types of the function parameters and re-

516 CHAPTER 17. GENERICS

turn value. The accompanying description defines the intended semantics of each, and any relevant
assumptions or restrictions.

An abstract data type can be represented in a programming language by a generic domain
together with a collection of virtual function declarations. A virtual function would be included
for each essential representation-dependent process to be performed on members of the domain.
This set of virtual functions explicitly describes the common behavior of all objects of the generic
domain and is, thus, a description of the semantics of the generic domain. The virtual functions
would be “guaranteed” to exist for every subdomain and would form the basis for defining all
functions on the generic domain. In a few languages, a programmer is able to explicitly declare
and name a generic domain, D, then use a single method to define a generic function, GF , over D.
The function header for GF would refer to D, and the code for GF could call the virtual functions
defined for D and rely only upon properties that are common to all specific domains contained in
D.

A realization of a generic domain is some specific, fully defined type that implements the se-
mantics of that domain. All realizations of a generic domain must have methods defined for all of
the domain’s virtual functions. A program could contain several realizations of the same generic
domain. For example, in Pascal, integer and real are both realizations of the domain “number”.
The translator and linker must guarantee that, by run time, realizations of all promised functions
for all subdomains must exist.

17.1.4 Generic Functions

A generic function is a single abstract operation that is defined over a generic domain. In most
languages, FETCH, STORE, and comparison for equality are primitive generic functions that are
defined for all primitive types. Most languages developed since the early 1970s extend these prim-
itive generics automatically to user-defined types. Let us call these three functions the universal

generic functions. Other functions that are commonly generic are READ, WRITE, and the arithmetic
operators.

A generic function creates a semantic problem. In order for a process to be meaningful, the
code that implements the process must be appropriate for the type of its arguments. In general,
code that is meaningful for one type is not meaningful for other types. We must, therefore, ask
how a function can meaningfully process data from a generic domain. In the older languages and
their translators, this was done in an ad hoc manner. With a limited number of generic functions
built into the language, as in Pascal and Ada, the translator can treat these functions as special
cases, look at the types of the actual arguments, and generate specific code that is appropriate
for them. On the other hand, if the user is permitted to define his or her own generic functions,
the translator’s type-checking algorithms must be extended to form some general mechanism for
handling generic functions. Such mechanisms are the subject of this chapter.

Depending on the language, a user-defined generic function may be defined by one block of code
whose parameter is from a generic domain, or by several independent blocks of code which have
been declared to share a common name. When a function is defined by more than one body of

17.1. GENERICS 517

Exhibit 17.2. A generic function as a collection of methods.

In this diagram a method is represented by a shield-shaped box, with its domain written across its
top. A function is a set of methods with a common name. Note that the function “+” in FORTRAN
77 is much more extensive than the function of the same name in Pascal.

"+" in Pascal

integer, integer

"+" in FORTRAN-77

real, real

integer, integer complex, complex

double, doublereal, real

code, each of the separately defined bodies is called a method for the function, and each method
must be declared with arguments from a different combination of domains. We define the domain
of such a function to be the union of the domains of all its methods.

There are three ways that a generic function may be defined by a single block of code: the
processing method can be independent of the argument type (as in comparison for equality), the
code can be polymorphic (see Chapter 18, Section 18.3), or the code can bypass the problem of
processing a generic argument by passing the argument on in a call to some other generic function
[Exhibit 17.4]. Functions that operate over ad hoc generic domains are either polymorphic or are
defined as a collection of methods [Exhibit 17.2].

Dispatching a Function Method

It is more difficult for a translator to handle function names with multiple methods than names
that represent one block of code. The process of deciding which method to use for a call is known
as dispatching the call, and it is carried out by a part of the translator called the dispatcher.
The dispatcher uses information about the function arguments to choose an appropriate method.
Dispatching could be (and is, in some languages) done on the basis of the number of arguments,
the types of one or all arguments, or the actual value of the arguments.

Some languages will try to coerce a function argument if the types of the actual arguments do
not match any of the defined methods. Depending on the language, the dispatcher might use a
subtype relationship (Pascal or Ada), possible type conversions (Pascal, FORTRAN), or hierarchical
relationships among the domains (C++, Smalltalk). For example, if the function Square in Exhibit
17.3 were called with an integer argument, the hierarchical relationship between the domains
integer and number could be used to dispatch the function call. If none of the defined methods is

518 CHAPTER 17. GENERICS

Exhibit 17.3. A function with generic formal parameters.

Assume that number is a generic type which includes types integer and real. If we were to
define the function Square on numbers (using a Pascal-like syntax), the function header would be
similar to this:

Function Square(a: number):number;

Assume that the integer variables k and m have been declared, and we call the function thus:

k := Square(m);

We would like this call to be legal. The formal parameter, a, is generic, and the actual argument
has a specific type which is a subtype of that generic. We would like the subtype integer to inherit

the definition for Square that was supplied for its generic supertype.

appropriate for the context, and no coercion is permitted that can make the arguments appropriate
for some method, the function call contains a type error.

In Chapter 18 we consider several very different implementations of programmer-definable
generic functions, with very different rules for dispatching. Some of these rules, such as those in
Miranda, are quite general and require a sophisticated dispatcher. Others, such as the hierarchical
dispatching rule in Simula and Smalltalk are more limited and can be implemented simply.

Functions over Generic Domains

Some languages permit the programmer to define a generic function with an argument from a
generic domain and only one defining method [Exhibit 17.4]. When such a function is called,
the argument’s type will be some specific type that is included in the generic domain. Such a
method cannot operate directly on its parameters, but must either test its argument and take an
appropriate branch (polymorphic behavior) or perform its process by calling other generic functions
defined over the same domain. The lower-level function could, in turn, pass the argument on to
another generic function. However, a chain of such generic calls must ultimately end with a call
on a bottom-level polymorphic function or a generic function that is defined by a set of specific
methods. This bottom-level function will include one body of code for each representation of the
generic data type that the programmer is using. In the prettyprint example, the chain of calls
will end with a call on some body for print_node that is defined to format and print out the data
from one specific type of node.

Generic Functions in Ad hoc Domains

An ad hoc generic domain has subdomains that are related by their semantics rather than by
having some common structure. Definitions of a function over two specific domains with an ad hoc
relationship may look quite different if they depend on the representation. The most that can be

17.1. GENERICS 519

Exhibit 17.4. A generic function defined by a single method.

Assume that you are working with binary trees in a hypothetical language that permits def-
inition of generic procedures. Prettyprint is a procedure that prints a generic data type called
binary_tree.

Prettyprint calls the explicitly generic functions print_node, go_to_left_son, and
go_to_right_son, but it does not do any operations that depend on how the tree is represented.

The programmer must define one method for each of these three functions for every kind of
tree node being used. Once this is done, one method suffices to define prettyprint for the entire
generic domain binary_tree, no matter how many ways that domain might be implemented.

said is that they perform the same semantic action on objects of the different specific domains. For
example, consider the ADT “Stack”, which includes the two generic subdomains “array_stack” and
“linked_list_stack”. The type declarations that are appropriate for implementing an “array_stack”
and a “linked_list_stack” are shown in Exhibits 17.5 and 17.6. These sets of definitions have little
in common except the names. Specifically, the selector functions defined in one bear no systematic
relationship to the selectors defined for the other.

The code for push on an array-represented stack [Exhibit 17.5] bears no easily described rela-

Exhibit 17.5. Pascal definition of push on an array_stack.

Here are type declarations and the function push for a stack of 100 reals:

CONST len = 100;

TYPE real_stack= RECORD

store: ARRAY [1..len] OF real;

top: 0..len END;

VAR rs: real_stack;

value: real;

FUNCTION push (VAR rs:real_stack; r:real): boolean;

BEGIN

IF rs.top = len THEN push := false (* error flag *)

ELSE BEGIN

push := true;

rs.top := rs.top + 1;

rs.store [rs.top] := r

END (* IF rs.top *)

END; (* push *)

520 CHAPTER 17. GENERICS

Exhibit 17.6. Pascal definition of push for a list_stack.

Compare the code below for the function push on a linked-list implementation of a stack to the
code in Exhibits 17.5 and 17.15 for the same generic operation on an array implementation of a
stack.

TYPE list_stack = ↑stack_cell;

stack_cell = RECORD

val : real;

next: list_stack END;

VAR rs: list_stack;

value: real;

FUNCTION push (VAR rs:list_stack; r:real): boolean;

VAR t:list_stack;

BEGIN

push := true; (* stack cannot overflow *)

t := rs; (* save current stack pointer *)

NEW(rs); (* append new cell to top of stack *)

rs↑.val := r; (* initialize new cell *)

rs↑.next := t

END (* push *)

tionship to the code for push on a linked-list-represented stack [Exhibit 17.6], even though they
carry out the same abstract operation. Representation-dependent functions such as push and pop

must be defined by separate methods for the species of an ad hoc generic domain. However, the
common intent of the subdomains is known to the programmer, and the common functionality can
be expressed by providing appropriate definitions for the stack operations. Further functions can
then be defined in a representation-independent way for the generic domain stack, in terms of
these declared abstract functions.

When two species of a generic domain are related by their intent, it is possible to define con-
version functions that map the elements of one onto the elements of the other and vice versa. This
mapping is done in such a way that corresponding elements are alternative representations of the
same external object. When such a mapping is applied, the physical form of the program object is
changed but the semantic intent is preserved. These conversion functions are unlike other functions.
They do not merely operate on elements of the generic domain; they actually define the semantics
of the generic relationship.

17.2. LIMITED GENERIC BEHAVIOR 521

17.2 Limited Generic Behavior

Working with domains that have several natural representations becomes difficult in a strongly
typed language when the representations must interact, unless the language permits some devia-
tion from the one-type-one-semantics rule. For this reason, many older languages support some
predefined generics and/or permit some flexibility in the types of array arguments. In this section
we explore ways in which limited forms of nonhomogeneous domains can be and have traditionally
been supported.

17.2.1 Union Data Types

Generic domains arise naturally in many algorithms. For example, consider the data structure
called a “balanced tree”, or “B-tree”. This is a branching index structure in which internal nodes
point to other nodes and leaf nodes point to potentially large data records. “Node”, then, has two
varieties, “internal” and “leaf”, and the programmer working with these trees must mix the two
representations in one structure. What is needed is the ability to define a type “node” that has
two independent realizations, or a type “pointer-to-node” that can point at either a data record or
another node.

Union data types have been used to implement balanced trees, but they are not a good solution
for two reasons. First is the possible violation of the semantic intent unless the union is discrimi-
nated, in which case the translator guarantees that the discriminant tag is always correct, and the
type checker always checks this tag. With fewer restrictions, a function could be applied to the
wrong variant. Second, union data types are not a practical solution when the size of the more
frequently used representation is much smaller than the size of the other, because of the excessive
amount of storage that would be consumed by the allocated but unused portions of every record.
B-trees are an example of a programmer-defined domain for which union data types are not a good
implementation.

The C language is popular partly because it permits a direct implementation of this kind of
pointer structure. Any C pointer type can be cast to any other pointer type, and such a cast can
be used to make a pointer to a leaf node assignment-compatible with a pointer to an interior node.
Since types are not checked when pointer assignments are done, there is no problem having pointers
in the same tree point at two types of nodes. Programmers then become responsible for doing their
own type checking on the nodes. This kind of flexibility is not available, though, in languages that
provide the semantic protection of thorough type checking.

17.2.2 Overloaded Names

The several methods of a generic function implement a single external operation over different
species of one generic domain. In an ideal language, we would have one name per generic function,
whether the function was predefined (like “=”) or defined by the programmer. For example, no
matter how many instances of the stack ADT we make, we would like to be able to refer to the

522 CHAPTER 17. GENERICS

Exhibit 17.7. An overloaded function, “+”.

Many different abstract processes have been called “+”, all of them dyadic, associative, and
resembling addition in some way:

• Addition: Compute the arithmetic sum of two numbers.

• Logical OR: Result is “true” if either argument, or both arguments, are “true”.

• Set union: Join two sets together and eliminate duplicates.

• String concatenation: Attach one string to the end of another.

“+” is an overloaded generic function because these processes do not have the same semantic
intent, and their domains are unrelated. At the same time, ordinary addition is defined over the
generic domain “number”, which includes integers, reals, etc. This subset of “+” that deals with
addition forms a pure generic function.

stack functions as “push” and “pop”. It is evident that older languages, such as Pascal are far
from ideal! If we defined two kinds of stacks in a Pascal program, we would have to define the
stack functions twice and give them different names. In modern languages, we are permitted to
“overload” a function name by defining multiple methods for one function. An overloaded name is
a name with two or more bindings in the same scope.

Overloaded names, unfortunately, are not restricted to use with generic functions. If a language
supports name overloading, nothing can stop a programmer from overusing it. An overloaded name
could be used to denote semantically unrelated processes on unrelated types as easily as to denote
a true generic function.

Ada supports the traditional generic arithmetic operators and extensible name overloading.2

The semantics of these operators can be extended by adding new methods to the existing predefined
set. This is called “overloading” because each operator name denotes several specific methods: a
“heavy load” for one name. However, no distinction is made in Ada between methods that carry
out the semantics of arithmetic and those whose semantics are unrelated. Both kinds of methods
may be added to the primitive functions. For example, we might use overloading to extend Ada’s
“+” function to include methods for “integer + float” and “string concatenate string”, as
suggested in Exhibit 17.7. The first method belongs in the same generic family as the primitive
methods. The second one is semantically unrelated and does not. The language permits any
existing arithmetic operator to be overloaded, but new ones may not be defined.

Using the arithmetic function name “+” to symbolize something unrelated to addition (such
as concatenation) is a questionable practice. We want to make a clear distinction between generic

2A short clarification of terminology seems necessary here to avoid confusion. Two kinds of generic objects are
supported in Ada. In Ada references, the term “generic” refers to parameterized source-code modules, which are
covered later in this chapter, and the term “overloaded” refers to operator names which have ambiguous meanings.

17.2. LIMITED GENERIC BEHAVIOR 523

functions that implement a single abstract function and those that include methods for a mishmash
of abstract functions. Hereafter, we will use the term generic function to mean a function name
that represents a single abstract function over a generic domain. The term overloaded function

will refer to a single name used to represent any collection of function methods, possibly having
unrelated meanings. Pure generic functions have clean semantics and obey the principle of distinct
representation (see Chapter 2.3); overloaded functions do not.

17.2.3 Fixed Set of Generic Definitions, with Coercion

“Number” is the best-known and most-used generic domain. It was recognized early in the history of
computing that integers and reals (and in COBOL, BCD strings) are all representations of numbers,
and that the programmer must be able to work with all kinds of numbers without worrying about
type conversions. Thus the generic domain “number” has been built into most older languages. To
say that this generic mode is built-in, we mean that the programmer is permitted to use objects
belonging to both primitive types as if they belonged to the same domain. More precisely:

• Two or more representations of the external domain “number” are defined in the language as
primitive types.

• Conversion functions are predefined that allow one- or two-way compatibility between those
primitive types.

• The language syntax allows objects of the two types to be used together in contexts that were
defined only for homogeneous pairs.

• The compiler will coerce an argument of one type to make it appropriate for a context that
requires the other.

In FORTRAN 77, C, and Pascal, the functions “+”, “-”, “*”, and “/” are generic functions,
defined over the implicit generic domain “number” [Exhibit 17.2]. However, languages designed
before the mid-1970s rarely permit the programmer to define new generic functions or even to
define new methods for existing generic functions.

When generic functions are built into a language, they often interact with rules for type coercion.
In the diagrams of “+” for both Pascal and FORTRAN, note the absence of a method for adding an
integer and a real. These languages permit the programmer to write arithmetic expressions that
involve a mixture of real and integer operands. However, these computations are not implemented
by separately defined methods. Rather, they are implemented by a combination of the method
for real addition and a coercion function which converts an integer to a real. The conversion from
integer to real is meaningful because both domains can be used to represent the same external
objects (whole numbers). These conversion functions can thus be invoked, without a change in the
semantics of the argument, when they are needed to carry out the computation.

In contrast, Ada also supports the implicit generic domain “number” but not mixed-type arith-
metic. The arithmetic operators are generic, and predefined methods for “+” include:

524 CHAPTER 17. GENERICS

Exhibit 17.8. Definition of new methods for an Ada operator.

We can implement mixed-type addition by adding new methods to the predefined set. The new
method works by explicitly converting one of the operands to be compatible with the type of the
other, creating operands of the right types for a previously defined method. The first definition
below defines the semantics for “3 + 5.2” but not for “5.2 + 3”. The second definition is also
required to permit “+” to be called with integer and float operands in either order.

function "+" (x: integer, y:float) return float is

begin return float(x) + y end "+";

function "+" (x: float, y:integer) return float is

begin return x + float(y) end "+";

function "+" (x,y: integer) return integer;

function "+" (x,y: float) return float ;

However, Ada does not support representation coercion of any sort, so addition of an integer and
a float is not predefined. It is possible for a programmer to define a limited number of mixed-type
operations in Ada. This is explained more fully in Section 17.2.4.

A more elaborate built-in generic function is the COBOL assignment command, MOVE. Several
definitions of MOVE exist which allow the large number of numeric and nonnumeric data types to be
used together. MOVE is also invoked automatically in the process of performing arithmetic, input,
and output.

17.2.4 Extending Predefined Operators

As in most languages, the arithmetic operators in Ada are generic, and the intended meaning of
each operator is determined by looking at the types of its operands and selecting the method
defined for those types. This very limited generic facility was included in Ada, as in most common
languages, for convenience, so that the programmer could use more than one representation of
numbers without needing to learn unfamiliar unique names for the operator methods.

Unlike many languages, however, Ada does not provide automatic type coercion to make a
set of operands conform to the types declared in one of the available methods. Thus mixed-type
operations are not predefined. To compensate for this lack, Ada permits more methods to be
loaded onto the existing arithmetic operators3 [Exhibit 17.8]. Each new method must involve a
new combination of operand types. As a happy side effect, the overloading mechanism permits us
to extend the basic arithmetic operators to work on programmer-defined types [Exhibit 17.9]. A
separate function must be explicitly provided for every combination of operator and operand types
that the programmer wishes to use. This can lead to quite a lot of definitions if more than one

3A similar facility was provided by the MAD compiler, Arden, Galler, and Graham [1963].

17.2. LIMITED GENERIC BEHAVIOR 525

Exhibit 17.9. Extensions of Ada operators for new types.

This exhibit further develops the material in Exhibit 17.8. We extend “*” to operate on the
mapped domain float and extend “+” to add two vectors.

type mass is new float;

type vector is array (1..5) of integer;

function "*" (x: integer; y:mass) return mass is

begin return mass (float(x) * float(y)) end "*";

function "+" (x,y: vector) return vector is

z: vector;

begin

for k in 1..5 loop z(k) := x(k) + y(k) end loop;

return z;

end "+";

operator or more than two types of operands are involved. To write a large number of these would
indeed be tedious!

Examples of new method definitions are given in Exhibit 17.9. The first declaration extends
“*” to work on an integer and a new type represented by float. The domain structure built up
here begins to be complicated, demonstrating a two-step relationship within a generic domain. To
multiply a mass by an integer requires a demotion cast (mass-to-float) and a conversion (integer-
to-float). Finally, a promotion cast (float-to-mass) is required to correctly label the type of the
result.

The second function defined in Exhibit 17.9 extends the “+” operator to a compound type,
vector.4

17.2.5 Flexible Arrays

It is not difficult to code a function that can process any length array of a given base type. Processing
of “flexible arrays” is supported in some very old languages, for example both FORTRAN [Exhibit
17.10] and C [Exhibit 17.11]. These functions work because the method for summing the elements
of a vector involves a process that is repeated for each vector element. The length of the vector is
passed as a separate argument and used to stop repetition.

Flexible array parameters are implemented very simply and very similarly in C and FORTRAN.
Array arguments are passed by reference in both languages. This avoids the need to allocate storage
space for the argument in the function’s stack frame, and the need to copy the contents of the array

4This is possible because Ada supports coherent passage of compound objects as parameters. An explicit declara-
tion of k is not required; the for loop implicitly declares the loop variable.

526 CHAPTER 17. GENERICS

Exhibit 17.10. An implicit parameterized domain in FORTRAN.

The letters at the right refer to the notes in the text; they are not part of the program.

REAL FUNCTION SUMUP (AR, N) (a)
REAL AR(N) (b)
SUMUP=0.0

DO 10 I=1,N (c)
SUMUP = SUMUP + AR(I) (d)

10 CONTINUE

END (e)

into that stack frame. Neither language supports automatic run-time bounds checks for arrays. The
lack of prior knowledge of the size of the array causes no problem for the compiler, since no compile-
time decisions are based on it. To ensure correct processing, a flexible array argument must have
a recognizable terminating value, or the array length must be passed as a separate argument.

In FORTRAN, the dimensions of an array parameter do not need to be declared, so long as they
are also passed as parameters or declared in a COMMON statement as global variables. Processing
can proceed correctly so long as the array length is known at run time. Exhibit 17.10 shows how
a flexible array might be processed in FORTRAN. Following are the program notes:

a. SUMUP is defined as a function of two parameters that returns a real.

b. The parameter AR is defined as a real array of unknown length.

c. This line defines the scope of a loop (up to statement #10) and directs that it should be executed
N times, with I taking on the values 1 to N.

d. This is not a recursive call. FORTRAN does not support recursion. Within a function, the
function name serves as a local variable.

e. The final value assigned to SUMUP is returned at END.

Similarly, in C, arrays are passed by reference and subscript bounds are not checked at all. With
multidimensional arrays, all dimensions except the first must be known at compile time in order
to translate subscript expressions. However, the first (left-hand) dimension is not used in subscript
computations. Thus the first dimension of an array parameter does not need to be declared in the
function.

In Exhibit 17.11 we define a C version of the FORTRAN function in Exhibit 17.10. The following
notes are keyed to the comments in the code. Line a declares the types of the formal parameters.
Note that the length of array ar is not specified. Line b declares a local floating-point variable,
sum, to be used as an accumulator. Lines c and d comprise a for loop that will be repeated n

times, with variable i taking on the subscripts 0 to n− 1. This loop adds the i-th array element
to the sum. Line e returns from the function with the final value of sum.

17.3. PARAMETERIZED GENERIC DOMAINS 527

Exhibit 17.11. A parameterized domain in C: array of floats.

real sumup (float ar[], int n) /* a */

{ int i;

float sum; /* b */

for (sum=0.0, i=0; i<n; i++) /* c */

sum = sum + ar[i]; /* d */

return sum; /* e */

}

These are examples of implicit, not explicit, parameterized generic domains. However, they
demonstrate that an implementation of integer-parameterized domains can be straightforward. A
function with a “flexible array” parameter is, technically, generic, because it can accept arguments
of many specific types. However, it does not cause the compilation and interpretation problems
inherent in type-parameterized generics. The code for a flexible array argument can be compiled
and type checked (but not bounds checked) because all the types involved are determined at compile
time.5

Arrays with Explicitly Parameterized Bounds

The inclusion (or exclusion) of flexible array parameters in Pascal caused a great deal of dissension
among the twenty members of the International Standards Organization committee that developed
the standard for Pascal. In the end, array arguments with flexible bounds, called conformant

arrays, were included in ISO Level 1 Standard Pascal, but not in the ANSI standard. American
implementations of Pascal, therefore, generally lack this important facility.

One of the issues the committee argued about was run-time bounds checks, which are normally
part of Pascal semantics. Rather than expecting the programmer to pass this information separately
or implicitly, the syntax for a conformant array parameter indicates that the bounds are passed as

part of the argument. These bounds are named in the formal parameter list and can be accessed
within the code. Exhibit 17.12 shows how the function to sum a vector would be written in ISO
Pascal. The conformant array parameter can be passed as either a value or a VAR parameter.

17.3 Parameterized Generic Domains

Varying the bounds or base type of an array or the type of a field in a record creates a collection of
closely related types. If we write a type expression with dummy parameters in place of one or more
of its fields, the result is a parameterized type expression. Consider the domain which is the union

5Automatic bounds checks cannot be done in C since the array bounds are not specified at compile time and are
not supplied at run time in a form that the run-time system can access.

528 CHAPTER 17. GENERICS

Exhibit 17.12. A Pascal function with a conformant array parameter.

Compare this ISO Pascal function definition to the C example in Exhibit 17.11. Note that the
bounds of the Pascal array are automatically passed as parameters to the function; they are named
and can be used in the code.

Function SumUp(VAR ar[Lower..Upper] of real):real;

Var i: integer;

Sum: real;

Begin

Sum := 0.0;

For i:= Lower to Upper do

Sum := Sum + Ar[i];

SumUp := Sum

End;

Here are some data declarations and two appropriate calls on the SumUp function.

Var Scores: array[1..3] of real;

Charges: array[1..1000] of real;

Answer := SumUp(Scores);

Answer := SumUp(Charges);

Exhibit 17.13. A parameterized type.

We define a type with two parameters, an integer and a type, then instantiate it to produce
two specific subtypes. (The syntax used is an extension of Pascal.)

Intent: A buffer for items of type TT

Parameterized type expression:
TYPE BUF(m:integer, TT: type) = array [0..m] of TT

Specific instances derived by instantiation:

Call Resulting specific type

Buf(5, real) array [0..5] of real

Buf(10, integer) array [0..10] of integer

17.3. PARAMETERIZED GENERIC DOMAINS 529

Exhibit 17.14. A parameterized linked list type.

Intent: A linked list cell.

Parameterized type expressions:
Type cell_ptr = ↑cell;

Type cell(DD:type) = record data: DD; next: cell_ptr end;

Specific instances:

Call Resulting specific type

cell(integer) record data:integer; next:cell_ptr end

cell(mytype) record data:mytype; next:cell_ptr end

of all the domains associated with a parameterized type, for all possible values of the parameters.
We call this a parameterized domain. Exhibit 17.13 shows a parameterized type and two domains
which have been derived from it by instantiation.

Exhibit 17.14 shows a mutually recursive pair of types which include a parameterized type and
a pointer type which depends on it. The two domains formed by these types are both generic.
Type cell has explicit parameters. Type cell_ptr is defined in terms of cell and thus “inherits”
the generic nature of cell.

A parameterized type expression is not compilable code as it stands. Rather, it is a template
from which code can be created by instantiation. In an instantiation call, the programmer sup-
plies actual, specific arguments. When this call is processed, the arguments are substituted for the
dummy parameters in the type expression, according to the lambda calculus substitution rule. The
result is an ordinary type expression. Instantiation happens during an early phase of compilation,
before parsing. To use a parameterized generic type, the programmer would create a parame-
terized source code module containing the parameterized type expression(s) and related function
definitions.

With a type-parameterized generic, the processing method is not quite independent of the type
of an argument. For example, the code for pop and push on a stack of reals is almost the same as
the code for a stack of integers, except that a different number of bytes of information will need
to be fetched, stored, or returned to the calling program. Similarly, matrix multiplication is the
same process whether operating on a matrix of reals or integers, except that appropriate methods
for the “*” and “+” functions must be used.

If a function were defined for several species of one type-parameterized domain, the source code
for the various definitions would very likely be identical except for the types of the parameters.
(Compare the code for push in Exhibits 17.5 and 17.15.) The object code, however, is not identical,
because the compiler uses the type declarations to compile appropriate methods for the built-in
generic functions such as fetch, store, “=”, “*”, and “+”. Thus the types of objects must be known
before the code can be fully compiled.

When a programmer writes specific type declarations and code that uses them, we say that the

530 CHAPTER 17. GENERICS

Exhibit 17.15. Pascal definition of push on a stack of characters.

Here are type declarations and the function push for a stack of 15 characters. Note that the code
between BEGIN and END is the same as in Exhibit 17.5; only the type declarations have changed.

CONST len = 15;

TYPE char_stack = RECORD

store: ARRAY [1..len] OF char;

top: 0..len END;

VAR rs: char_stack;

value: char;

FUNCTION push (VAR rs:char_stack; r:char):boolean;

BEGIN

IF rs.top = len THEN push := false (* error flag *)

ELSE BEGIN

push := true;

rs.top := rs.top + 1;

rs.store [rs.top] := r

END (* IF rs.top *)

END; (* push *)

data types are bound at source time. This is the only programming style supported by languages
in the Pascal family, and it does not permit use of user-defined generic domains.

17.3.1 Domains with Type Parameters

We should distinguish between an integer-parameterized domain (a flexible array) and a type-
parameterized domain, which has a type parameter like the type cell in Exhibit 17.14. Few
existing languages permit component types to be parameterized, while several languages permit
functions to be written with implicit or explicit flexible arrays.

An ADT is a collection of types, functions, and objects that express an abstract process on
abstract data. When Pascal programmers wish to use an ADT such as “stack” or “linked list”,
they start by writing type declarations for their own data and for the ADT; they then write out
definitions for the ADT functions, making adjustments to the function headers so that they are
compatible with their own types. If two variants on the generic domain are needed, each part of
the ADT must be written out twice.

Rewriting and re-debugging the functions for a common ADT is tedious but not difficult. The
code for each new variety of stack is so similar to the code for other varieties that code can be copied
out of a reference book with minimal modification. This leads us to ask whether it is possible to
automate the process of coding up a new version of an ADT. We would like to keep the ADT code

17.3. PARAMETERIZED GENERIC DOMAINS 531

in a library, so that it does not need to be reentered manually each time it is used.
Many ADTs can be expressed as sets of parameterized type definitions and functions with

parameters of those types. Definitions of this sort can easily be kept in a library, but we need a
way to relate the type parameters in the library modules to the types in a user’s program. Also,
the function headers for the ADT must be made compatible with the user’s own data types.

The easiest way to achieve these goals is by adding a preprocessor to the language translator.
The ADT is coded as a parameterized module that contains type and function declarations written
in terms of the generic parameters. These symbols will be bound to specific meanings at precompile
time by appropriate preprocessor commands. A library of parameterized source code modules
could be made available to programmers to include and instantiate, as needed. Before compiling,
the preprocessor is used to supply specific meanings for the generic parameters. The source code
package is then expanded, like a macro, using these symbol definitions. All parameterized type
declarations, function definitions, and object declarations in the package are expanded to form
normal nonparameterized instantiations.

17.3.2 Preprocessor Generics in C

Exhibit 17.16 shows how one might use C to write code for a generic sorted-linked-list type.
Such a package would contain definitions for several linked-list functions, including insert_item,
delete_item, and several others. For simplicity, only one of these functions is shown here. (The
identifiers written in uppercase are symbols that will be defined and instantiated by the preproces-
sor.)

The generic function find_item was written in terms of the generic type names and the generic
functions GREATHAN and EQUALS, which must be defined before expansion. The functions of derefer-
ence (*), selection (->), and assignment (=) are also used, but these are defined by the nongeneric
part of the type definition. Nothing in the function code depends on the particular type to which
ELEMENT will be bound; an ELEMENT could be a single character or a lengthy record.

To use the generic list package in Exhibit 17.16, the user must include in the program definitions
of ELEMENT and of the associated type-dependent operations. In all, this is several lines of routine
and tedious code. A convenient way to automate the inclusion process is to put the code for
several commonly useful types into a header file and use conditional compilation to include only
the appropriate set of definitions.

A header file is given in Exhibit 17.17 that would permit the generic linked-list module to be
used for linked lists of character strings or of integers. If some other type of data were to be used,
a group of similar definitions would have to be written for it and included in another conditional
clause. To use this header file, the programmer must type one of the following pairs of lines at the
top of the code:

For lists of strings For lists of integers

#include "lists.h" #include "lists.h"

#define ALPHA 1 #define INTEGER 1

532 CHAPTER 17. GENERICS

Exhibit 17.16. Definition of a generic domain in C.

Below are type declarations for a generic type “sorted linked list” and one function whose
domain is this type. Each list cell consists of one data item and a pointer to the next list cell. The
generic symbols are written in uppercase letters and will be defined as macros by the programmer
and expanded by the C preprocessor before actual compilation. Exhibit 17.18 shows the result of
expanding this code with one set of symbol definitions shown in Exhibit 17.17.

typedef struct cell {ELEMENT data; struct cell *next;} CELL;

typedef CELL * LIST;

/*---*/

int find_item(ELEMENT find, LIST head, LIST *scan, LIST *prior)

{

scan = head;

prior = NULL;

while (GREATHAN(find, (*scan)->data))

{ *prior = *scan;

*scan = (*scan)->next;

}

return EQUALS(find, (*scan)->data);

}

The value of the #define symbol is tested by the preprocessor’s #if command, which triggers
inclusion or exclusion of the dependent definitions. During preprocessing, the generic package is
converted to a set of ordinary declarations and definitions which define and process a specific type.
Exhibit 17.18 shows the ordinary code that results from expanding these generic definitions for
type argument char*.

Ada Generic Packages

We can implement an ADT in Ada as a generic package. A package is a module that contains type,
data, and/or function declarations.6 An Ada generic is a parameterized template which can be
instantiated to create a subprogram or a package. We will examine a simple generic subprogram
first, then tackle the problem of combining a generic with a package.

Parameters to a generic subprogram can be types, array lengths, or function names. The generic
parameters are used as follows:

• The integer parameters to the package are used as array bounds in parameterized type ex-
pressions within the package.

6
Ada packages were described in Chapter 16.

17.3. PARAMETERIZED GENERIC DOMAINS 533

Exhibit 17.17. Using a generic type in C.

This is a header file that would permit the generic linked-list module to be used for linked lists
of character strings or of integers.

/* The function "strcmp" performs alphabetic comparison of two strings, */

/* "strcpy" copies a string value into a string variable. */

/* \377 is the octal code for the largest 1-byte character. */

#if ALPHA

#define ELEMENT char *

#define LESSTHAN(x, y) ((strcmp((x),(y)) <0)

#define GREATHAN(x, y) ((strcmp((x),(y)) >0)

#define EQUALS(x, y) ((strcmp((x),(y)) == 0))

#define ASSIGN(x, y) (strcpy((x),(y)))

#define MAXVAL ’\377’ /* Octal for char code 255.*/

#elif SHORT

#define ELEMENT short int

#define LESSTHAN(x, y) ((x) <(y))

#define GREATHAN(x, y) ((x) >(y))

#define EQUALS(x, y) ((x)==(y))

#define ASSIGN(x, y) ((x)=(y))

#define MAXVAL 0x7fff

#endif

• The type parameters are also used in parameterized type expressions. If the data structure
within the package uses two interdependent types, such as “cell” and “cell_pointer”, both
must be passed as parameters.

• A generic must have one functional parameter for each representation-dependent function or
operation that is used in the body of the generic.

Exhibit 17.19 gives an Ada generic definition for addition on length-three numeric vectors. Such
a definition might be part of a generic package and be included in a library. Let us examine each
part of the generic code in Exhibit 17.19 so that we may see how these parts work together.

We begin definition of a generic subprogram by declaring the generic parameters (written here
in capital letters). Line (a) declares a dummy type name, NUMBER. The predefined generic domain
named private is used for any type parameter for which assignment and tests for equality are
defined. Thus, this generic definition can be instantiated with arrays of integer, float, or any
other type which permits assignment and tests for equality.

534 CHAPTER 17. GENERICS

Exhibit 17.18. Specific code results from preprocessing.

This function is the result of including the header file in Exhibit 17.17 with the symbol ALPHA
defined to be 1, and expanding the parameterized code in Exhibit 17.16.

typedef struct cell {char * data; struct cell *next;} CELL;

typedef CELL * LIST;

/*---*/

int find_item(char * find, LIST head, LIST *scan, LIST *prior)

{

scan = head;

prior = NULL;

while (strcmp((find),((*scan)->data)) > 0) {

prior = *scan;

scan = (*scan)->next;

}

return (strcmp((find), ((*scan)->data)) == 0);

}

Exhibit 17.19. A parameterized domain in Ada: vector of numbers.

Step 1 is definition of the generic template:

generic

type NUMBER is private; -- (a)

type VECTOR is array (1 .. 3) of NUMBER; -- (b)

with function PLUS (x,y: NUMBER) return NUMBER; -- (c)

procedure vector_add (v1, v2: in VECTOR; v3: out VECTOR); -- (d)

procedure vector_add (v1, v2: in VECTOR; v3: out VECTOR) is -- (e)

begin

for J in 1..3 loop v3(J) := PLUS(v1(J), v2(J)) end loop;

end vector_add;

17.3. PARAMETERIZED GENERIC DOMAINS 535

Ada provides a very small collection of predefined generic domains. In addition to private,
generic domains are defined for integer types, floating-point types, fixed-point types, finite types,
and pointer types, and for the completely general type with no known properties. Ada programmers
are not allowed to define their own generic domains; each generic type parameter must be declared
to belong to one of the predefined domains. The programmer, therefore, selects one that comes
closest to the properties of his or her own application’s domains. We use the type NUMBER in this
example, which is a super-domain of all the numeric generic domains that are predefined. We,
therefore, declare NUMBER as private.

A second type parameter, VECTOR, is declared on line (b). Even though VECTOR is defined in
terms of NUMBER, it must be passed as a separate parameter. This certainly makes the preprocessor
easier to implement but is annoying for the programmer.

The code of the generic routine cannot “just use” any operations except assignment and equality-
comparison, since these are the only functions that are “guaranteed” for the domain private. Often
this is no problem, as the code of many functions relies only on these two basic operations. For
example, only assignment is needed to define the “push” and “pop” functions for stacks. However,
the code for vector_add uses both assignment and “+” for NUMBERs. To do so, “+” must be declared
as a parameter (line c).

The generic procedure header must be declared before the actual definition is given. Line (d)
uses the parameter names to declare the function named vector_add. There are three parameters,
two vectors to add up, and one to receive the answer. On line (e) we finally begin definition of the
actual procedure. The syntax is the same as an ordinary nongeneric procedure, except that it uses
the generic type parameter(s).

A generic procedure or package must be instantiated before the code can be compiled. Prior to
instantiation, the programmer must write a specific type definition for each type parameter and a
specific function method for each of the package’s functional parameters. Finally, the programmer
must write an instantiation command using these predefined specific objects as arguments. The
instantiation call is given as part of a declaration for the name that will be bound to the instantiated
procedure or package. This name must be a new, unique name. To instantiate a generic procedure
or package we write:

procedure 〈procedure name〉 is new 〈generic name〉 (〈specific argument list〉);

package 〈package name〉 is new 〈generic name〉 (〈specific argument list〉);

During the instantiation process, the compiler substitutes the actual arguments supplied by
the programmer for the generic parameter names and expands the template into ordinary, fully
specific, compilable source code. This is then compiled and bound to a unique function name
supplied by the programmer. This name refers to exactly one procedure or package and is not
generic or ambiguous at all. If the programmer wishes to instantiate the same package twice, she
or he must supply two names for the results.

To instantiate the vector_add template we must first define any new specific types and functions
needed for the parameters PLUS, NUMBER, and VECTOR. For example, to create a vector of floats, type
float and floating-point addition are already defined, but we need to declare a new type consisting

536 CHAPTER 17. GENERICS

Exhibit 17.20. Instantiating a generic template in Ada.

type real_vec is array (1 .. 3) of float; -- (f)

type int_vec is array (1 .. 3) of integer;

procedure int_vector_add -- (g)

is new vector_add(NUMBER=>integer, VECTOR=>int_vec, PLUS =>"+");

procedure real_vector_add -- (h)

is new vector_add(NUMBER=>float, VECTOR=>real_vec, PLUS =>"+");

of an array of three floats. Then we write an is new declaration containing a call on the template
with these actual arguments.

In Exhibit 17.20, we define two length-three numeric array types—int_vec and real_vec. We
use each of these types to instantiate the generic from Exhibit 17.19. In line (g) we instantiate
the vector_add template. We indicate that the type parameter NUMBER is to be replaced by the
type integer, VECTOR is to become int_vec, and PLUS is the standard “+”. The translator will
make these substitutions and generate ordinary, compilable, nongeneric code for a procedure named
int_vector_add.

We repeat the instantiation process in line (h) with types float and real_vec, producing
the nongeneric procedure named real_vector_add. Now we have two ordinary procedures that
are alike except for their names and the types of their parameters. The object code will contain
translations of both copies. Note that no definition of the function argument was given; when this
is done it defaults to the definition (if any) for that symbol in the context surrounding the generic
definition.

A Generic Package. We have described both packages and generics in Ada. The normal way
to use both generics and packages is by combining them—a package definition is placed inside a
generic declaration, producing a generic package. Such a package has parameterized public and
private parts that can be instantiated with various component types and array lengths to produce
code tailored to an individual application. The elements that must be present in an Ada generic
definition are:

1. The generic parameter declarations.

2. The package header, containing declarations of the public symbols

3. The package body, containing definitions of public and private symbols.

As an example, we show in Exhibit 17.21 how the code for the stack package in Exhibit 16.6
can be generalized to a parameterized generic module. First, the entire package is nested within a
generic declaration. Then all references to the base type of the stack and the length of the stack
are replaced by references to the generic parameters.

17.3. PARAMETERIZED GENERIC DOMAINS 537

Exhibit 17.21. Declaration of a generic stack package in Ada.

generic

MAX: POSITIVE; -- A positive integer.

type ELEMENT is private; -- Type of a generic parameter.

package STACK is -- Declare functions in package.

function PUSH(X: ELEMENT);

function POP return ELEMENT;

function TOP return ELEMENT;

package body STACK is -- Functions, variables for package.

stk:array(1..MAX) of ELEMENT;

tos: INTEGER range 0..MAX;

function PUSH(X: ELEMENT) is

begin

if tos<MAX then

tos:=tos+1; stk(tos):= X;

return true;

else return false;

end if

end PUSH;

function TOP return ELEMENT is

begin

if tos >0 then return stk(tos);

else raise STK_FULL; -- Exception error condition. end if;

end TOP;

function POP return ELEMENT is

ans: ELEMENT;

begin

ans:= TOP; tos:=tos-1;

return ans;

end POP;

begin

tos:=0; -- Initialization for this package.

end STACK;

538 CHAPTER 17. GENERICS

Exhibit 17.22. Instances of the stack package.

In writing a program to do a precedence parse and code generation for arithmetic expressions, one
needs to use two stacks: a stack of tokens and a stack of expression trees. Here we instantiate
the generic stack package from Exhibit 17.21 twice to create these two stacks. For simplicity here,
assume that tokens are represented by single characters, and that the function named do_error is
the programmer’s own error handler and is defined previously.

type TOKEN is CHARACTER;

type TREE is access CELL;

type CELL is record

data: TOKEN data;

lson: TREE;

rson: TREE;

end record;

declare

package tok_s is new STACK(20, TOKEN);

package tree_s is new STACK(60, TREE);

begin

if not tok_s.PUSH(’#’) -- Push beginning-of-line symbol.

then do_error("Stack full.") -- Check error return.

endif;

...

We can instantiate this package, as shown in Exhibit 17.22, to create multiple stack packages,
each with its own storage and its own copy of the code for each function. Within this code, calls
on PUSH, POP, and TOP will be compiled with meanings for the fetch and store operations that are
appropriate for the actual type of the type-argument. Note that we give a name to each specific
package in the instantiation command. When we call the PUSH that belongs to a package, the name
of the package is used, with “.PUSH”, to denote the proper method for PUSH. The equivalent of the
stack package in Exhibit 16.6 could be created by instantiating STACK with the parameters (10,

INTEGER).

Evaluation

An abstract data type (ADT) is a collection of types, functions, and, possibly, objects that express
a generic process on generic data. An ADT can be defined in C by using the preprocessor and in Ada

17.3. PARAMETERIZED GENERIC DOMAINS 539

by using a generic package. Ada’s generic preprocessor is very much like the C macro preprocessor.7

Thus the capabilities of Ada generics are very similar to those in C.
These preprocessor generics are relatively easy to implement and make real progress toward

the goal of creating practical, flexible code libraries. However, they are far more limited than the
support for generic types provided in various object-oriented languages. The primary limitation is
that final binding of the type parameters happens at precompile time. Thus all type flexibility is
lost before compilation begins. If a program deals with a domain that has two or more represen-
tations, there must be two or more instantiations of the package, and two or more names for those
instantiations.

It is much more difficult to support code with run-time generic flexibility. Most languages
which do so are translated by interpreters, not compilers. To support runtime generics, the type of
each object must be known at run-time, and the translator must include a sophisticated method-
dispatcher which examines those types at run time and selects an appropriate method. We will
discuss run-time dispatching in Chapter 18.

Exercises

1. Contrast generic domains and specific domains.

2. Describe the four ways in which a domain may be considered generic.

3. What are the problems involved in the implementation of generics?

4. What is a virtual function? What is its role?

5. What are the universal generic functions? Explain.

6. What semantic problems are created by the generic function?

7. What is a method? What is dispatching the call?

8. Why must functions such as “push” and “pop” be defined by separate methods for the species
of an ad hoc generic domain?

9. Why is generic behavior considered “limited” in older languages?

10. What is a union data type? What are its limitations?

11. What is an overloaded name? What are the dangers involved in overloading?

12. How do built-in generic functions interact with rules for type coercion?

7There is one major difference in name scoping. Unbound names in a C macro will be interpreted in the context
of the macro call. In contrast, unbound names in an Ada generic function will be interpreted in the lexical context of
the module in which the generic was defined, not the module containing the instantiation request.

540 CHAPTER 17. GENERICS

13. How do Ada’s predefined operators limit mixed-type operations? How does Ada compensate?

14. What is a flexible array? Why is a function with a flexible array parameter considered generic?

15. What is a parameterized domain? A parameterized type expression?

16. What is the difference between an integer-parameterized domain and a type-parameterized
domain? Why do some languages support the former but not the latter?

17. What is the role of the preprocessor in relating the types in library definitions to the types
in a users’s program?

18. What is a generic package in Ada? How are generic packages related to ADTs?

Chapter 18

Dispatching with Inheritance

Overview
Types have traditionally been used for the two disparate purposes of describing storage
and describing semantics, and this dual use has led to compromises in the power of
the language to express type relationships. One approach to the conflict generated by
the two needs is to eliminate or subordinate one use. If type checking for function
applicability is not done, the language never stands in the way of the programmer,
never prevents programmers from doing things they know are sensible or exploiting
relationships they know exist. This approach is taken in C. Types are used at the
bottom level to allocate, access, and encode but are not used to describe the semantics
of classes of objects.

On the other hand, we have languages such as Smalltalk where all objects are repre-
sented as pointers. In Smalltalk the type (class) is used primarily to control function
application, and data representation is simplified into near uniformity.

Future languages will separate the storage mapping of an object and its domain mem-
bership, permitting them to be defined separately. Doing so will enable us to retain
the safety of type checking within a language that can exploit domain relationships. A
mode graph gives us a systematic way of representing domain relationships and type
conversions.

The goal is a language in which the programmer can manipulate abstractions of both
objects and functions. This requires that we be able to describe objects and related
classes of objects, actions, and variants of those actions. Then the translator must use
that information to dispatch functions and coerce arguments.

Implementation of these mechanisms opens up new problems and leads to the need to

541

542 CHAPTER 18. DISPATCHING WITH INHERITANCE

define parameter domains using type expressions with constraints, rather than simple
type constants. The semantic basis of a generic language must include a general type-
deduction or type-calculation system.

18.1 Representing Domain Relationships

In the familiar strongly typed languages, each type declaration creates a new domain, and it is
not possible to define two structurally dissimilar types to represent related external domains, then
further declare and use the relationship between them. In these languages, types are used both
to define the physical representation of an external domain and to define the semantic properties
(function applicability) of program objects. Some domain relationships are built into programming
languages. For example, most languages have a few conversion routines that can be used by the
compiler, when needed, to make sense of the code. However, most languages do not provide a way
to express relationships among user-defined domains.

Sometimes a programmer’s newly defined domains are unrelated to other domains used in a
program. In this case it is not a burden to define a new set of functions for each newly defined
domain. However, a programmer’s domains are often related and share common properties with
each other. Some functions might operate correctly on objects from a variety of related external
domains. In the traditional strongly typed language, the programmer must represent all related
external domains as variants of one type if they are to be processed by the same set of functions.
Generic functions and domains have been developed to solve this dilemma: they permit each
variation of a domain to be defined as its own subdomain, and then the relationships among the
subdomains are separately declared and used by the translator.

The class hierarchies in the common object-oriented languages (Smalltalk, C++) are tree-
structured. The only class relationship supported is the one created by deriving one class from
another, and each class can only be derived from one parent. Generalized graphs of classes are not
possible in these languages because the objects of a derived class are represented by adding fields
to the record type used to represent the parent class. But it is possible to use virtual functions, not
class derivation, as the basis for declaring class relationships, and once we do this, we can build a
generalized graph of classes.

18.1.1 The Mode Graph and the Dispatcher

In this discussion, we will use a structure called a mode graph to discuss how both domain relation-
ships and dispatching can be generalized. We call one node in the graph a mode, and diagram it
as a round-cornered box, like the box labeled “Number” in Exhibit 18.1. The contents of a mode
box vary according to the type of the mode: generic mode boxes contain a list of virtual functions,
specific mode boxes contain a type object. Methods defined for a mode are sometimes listed near

18.1. REPRESENTING DOMAIN RELATIONSHIPS 543

Exhibit 18.1. Mode graph for the generic domain “Number”.

Methods:
+(complex, complex)
-(complex):complex
*(complex, complex)
/(complex, complex)
One
Zero

?

record 8 bytes
rp, ip
real, imag

complex

Number
Promises: Const:
+(Number, Number) One
-(Number) Zero
*(Number, Number)
/(Number, Number)

realinteger imag

primitive 2 bytes primitive 4 bytes represented 4 bytes
real

I S I S

Methods:
+(imag, imag)
*(imag, imag)
*(imag, real)
-(imag)

CONV
i_to_r REP

it. We will consider typed modes, parameterized modes, subdomain modes (or submodes), generic
modes, and representation modes. As we discuss modes, we will point out the aspects of this mode
graph that have been incorporated into modern languages.

The dispatcher is a process built into a generic programming language that uses the information
in the mode graph to dispatch methods for function calls. You may visualize it as a mouse that
crawls along a maze of tunnels (the mode graph) looking for a method definition that will satisfy
the call. Depending on the language, the dispatcher has more or less information available to it,
and has more or less freedom to move from one domain in the graph to another, related domain.

The job of dispatching potentially has two components: work that can be done at compile
time because all relevant information is available then, and work that must be deferred until run
time. We will distinguish these two job components by talking about the compile-time dispatcher

and the run-time dispatcher. Traditional languages have only a primitive compile-time dispatcher.
Modern languages, including object-oriented languages and functional languages, have an extensible
compile-time dispatcher and a run-time dispatcher.

Typed modes. A typed mode is used in the mode graph to represent nonpolymorphic types,
such as integer or a record type. Every typed mode has an associated type object.1 Actual objects
all belong to some typed mode, and all function translation and dispatching must start with the
typed mode of the argument.2

1Review Chapter 14 if necessary.
2Just as object-oriented dispatching starts with the class of the implied argument.

544 CHAPTER 18. DISPATCHING WITH INHERITANCE

Generic Modes and Promises. A generic mode represents an abstract domain. Its meaning
is defined by a set of virtual functions, rather than by a representation. A generic mode is similar
to a C++ base class but differs in two important respects. First, a C++ class has an associated
representation, from which other representations may be derived; further, derivation is the only way
to create an additional representation of a class. In contrast, a generic mode has no representation
when it is first created, but typed modes and other generic modes may be attached to it later.
The typed modes are representations of the generic. They might be structurally related, like the
instances of a parameterized domain, or might have an arbitrary, ad hoc relationship to each other,
like integer has to real.

In an object-oriented class hierarchy, both the fields of the representation record and the func-
tions that operate on the record are inherited. It is this inherited relationship that guarantees
that the code will be semantically meaningful when it is executed. In a mode graph, the fields
of one mode are not inherited by the related modes, and other means must be provided to assure
that the operation of the program will be semantically meaningful. Virtual functions can provide
this assurance. The box for each generic mode will contain a set of virtual function declarations
which we will call promises. The promises of a mode will be used, like virtual functions in C++,
to describe the implementation-dependent processes that characterize the semantics of the mode.
Any functions defined for the generic mode itself must be written only in terms of its promises.
Exhibit 18.1 shows a diagram for a generic mode Number. In it, promises state that numbers must
have four defined arithmetic operations and also have constants defined for the arithmetic identity
values, one and zero.

The generic facility in Ada has six predefined modes which can be used to declare the types of
arguments to generic packages. For example, the mode “private” promises only that assignment
and test for equality will be defined. Some other Ada modes are “range <>”, meaning some integer
type, and “digits <>”, meaning some floating-point type. In our terminology, short integers,
unsigned integers, long integers, and subranges of integers are all submodes of the predefined Ada
mode “range <>”. In turn, “range <>” is a submode of the mode “(<>)” (which includes any
discrete type).

Ada would be a better language if it provided a way for a programmer to declare new modes
with different promises. Having only six modes available, as in Ada, is severely limiting. If the
properties of a programmer’s domain do not happen to match one of the predefined modes, the
programmer must use some other mode with fewer promises, or limited private which has no
promises at all. If a function is needed which should be defined for the desired a bstract mode,
that function must be passed as an argument in the call that instantiates the package. This is a
nuisance, at best, and half defeats the purpose of having generics.

Submodes. A mode graph can be used to represent a variety of domain relationships by intro-
ducing varied kinds of links from one mode to another. The links corresponding to Ada modes and
to the “derived from” relationship in C++ are called submode links and are labeled by the word
IS. A submode is one representation of its base mode and inherits function methods from it. In

18.1. REPRESENTING DOMAIN RELATIONSHIPS 545

Exhibit 18.1, the modes integer and real are shown as submodes of Number.
An ad hoc generic domain includes two or more specific domains that are related by their mean-

ing rather than by their structure. Physically, the two domains might be represented differently,
but logically, they have a common intent and common functionality. An IS link expresses the
subdomain relationship that exists between a generic domain and its representations.

In some languages, operations are defined only for specific domains, and the IS relationship is
not exploited. In contrast, consider APL, whose designers expected programmers to have infrequent
concern about the representation of numbers and frequent use for the semantic relationship among
the representations in use. The generic domain “Number”, not one of its specific representations,
was made primitive. Further, the relationship between the generic domain and its subdomain
was made explicit and flexible.3 Many APL operations are defined for numbers, rather than for
either integers or reals. Others, which require the semantics of a discrete type, are defined only for
integers.

Declaring and Using Mode Relationships. The set of promises on a mode provide a seman-
tically sound criterion for being a submode. Thus if modes, promises, and links were all declarable,
we could declare M ′ to be a submode of M as soon as all promised methods were defined for
M ′. In a generalized graph structure, a mode might have several supermodes, so these methods
might be defined directly for M ′, or might be inherited by M ′ down some other submode link. In
our example, there is no problem with declaring that integer and real are submodes of Number.
But before the submode link for complex can be declared, the promised arithmetic functions and
constants must be defined. Once this is done, we can declare that complex IS Number. Now the
submode complex will inherit the functions defined for Number, just as the predefined submodes
integer and real do.

The promises defined for a generic mode guarantee that the promised functions will be defined
for every specific instance of the generic mode. This permits us to write representation-independent
functions whose domain is the generic mode. When one of those functions must access a represen-
tation, it calls a promised function.

When we declare that a specific mode IS a submode of a generic, all functions defined on the
generic mode are inherited by the submode. That means that a programmer can call a function
F, defined for the generic mode G, on an argument from the submode, S. If F calls one of the
promised functions, the dispatcher must find the appropriate method to carry out the promise. To
do this, it must look for and dispatch the method that is applicable to the submode S. Often, this
dispatching can be done at compile time, but in the most general case, the mode S is not known
until run time, and dispatching must be done at the last minute.

Instantiation Modes. Parameterized generic domains were discussed in Chapter 17, Section
17.3. The C and Ada implementations discussed there both require instantiation of the generic

3In APL, a number is an integer if and only if it differs from an integral value by no more than the currently
defined comparison tolerance.

546 CHAPTER 18. DISPATCHING WITH INHERITANCE

Exhibit 18.2. Diagram of an instantiated mode.

array-
 type

24 bytes
1..3
8 bytes @
complex

VECTOR(complex)

 BIND
T is complex

VECTOR(T: type)

array-
 type

3*sizeof T bytes
1..3
sizeof T bytes @
T

mode and its dependent functions at compile time. The result is that a set of specific types
and functions are generated and compiled, and the fact that these were derived from a generic
is forgotten. The mode graph can be used to represent the relationship between a parameterized
generic domain and an instantiation of that domain. We will diagram this relationship as a BIND
link, labeled by the bindings for the generic parameters that were specified in the instantiation call.
A BIND link is illustrated in Exhibit 18.2. We will explore the question of delaying binding until
run time and consider the advantages and problems caused by that delay.

Conversions and Coercions. Not every one-argument function is a conversion or a cast. Casts
arise only from mapped domains and are simply part of the strong typing system of the language.
Conversions are defined ad hoc, and only the programmer can know which of his or her functions
are legitimate conversions. The important aspect of a conversion is that it must not change the
meaning of an object. Defining a conversion can be done in any reasonable language, but most
languages do not provide a way to tell the compiler that the function is, indeed, a conversion.
C++ permits the programmer to define and declare conversion functions (called constructors),
and languages that are now at the stage of research will incorporate more general provisions for
declaring conversion functions. Once the compiler knows about the conversion, its dispatcher can
use it to coerce arguments, just as the built-in conversions are used.

Without some provision for coercion, domains with multiple representations are unwieldy and
almost impractical to use. We can demonstrate the problem in Ada. Ada permits the programmer
to define new domains, then define new methods for the existing generic operators that operate on
the new domains. The definitions of “+” and “*” for the new domain imag are an example [Exhibit
17.9]. But even though we can extend the intrinsic operators, it is a tedious job to achieve the ease
of use of mixed-type arithmetic that is built into Pascal, FORTRAN, and C, because Ada lacks any
provision for type coercion. To implement mixed-type arithmetic, the programmer must include
definitions for every combination of operator and operand types desired [Exhibit 18.3]. Thus if F
binary functions are to be defined over a generic domain with R representations, the number of
method definitions needed would be F ·R2!

FORTRAN actually supports these four numeric types and supports mixed-type arithmetic on

18.1. REPRESENTING DOMAIN RELATIONSHIPS 547

Exhibit 18.3. Exponential explosion of method definitions.

Assume that a programmer is using four representations of the domain Number: integer, float,
double, and complex. To implement full mixed-type arithmetic for these four types, without type
coercion, 16 method definitions must exist for each operator. Thus for “+” we would need:

+(int, int) +(float, int) +(double, int) +(complex, int)
+(int, float) +(float, float) +(double, float) +(complex, float)
+(int, double) +(float, double) +(double, double) +(complex, double)
+(int, complex) +(float, complex) +(double, complex) +(complex, complex)

For four arithmetic operators, we would need 64 methods!

all combinations of operands. However, FORTRAN does not have 64 method definitions for these
functions. It has only 16 methods (four each for four operators), plus the conversion functions
listed in Exhibit 18.4.

Type coercion between alternate representations of the same external domain reduces the num-
ber of function method definitions necessary. That is why PL/1 provided coercions from any basic
type to any other, directly or through a series of changes. This coercion facility was completely
general. Unfortunately, it masked real type errors by changing the type of an erroneous argument
to whatever would seem to work. Sometimes this was beneficial, but sometimes it made semantic
hash out of the data. It is obviously impossible to create a fixed set of conversions that will handle
all mode relationships for all time in a semantically valid manner. When PL/1 tried to anticipate
all future conversion needs, and used these conversions to coerce arguments, it resulted, all too
often, in converting an object to something else with an unrelated meaning. Worse, coercion errors
were especially difficult to track down because the semantically erroneous action was not caused
by anything explicitly written in the program, but by some subtle and poorly understood type
conversion built into the system.

The only adequate solution is to permit programmers to define their own conversion functions
and to declare them in such a way that the compiler can use them for coercion. It would then
be the programmer’s responsibility to define only semantically valid conversions. We will diagram
a conversion function, F , that converts from mode M1 to mode M2, as a link from M1 to M2,
labeled with “CONV” and the function name. In Exhibit 18.1, a conversion link is shown from integer

Exhibit 18.4. Coercions built into FORTRAN.

Result Type Functions Defined

integer INT(REAL), NINT(REAL), INT(DOUBLE)

real REAL(INT), REAL(DOUBLE), ABS(CMPLX)

double DBLE(INT), DBLE(REAL)

548 CHAPTER 18. DISPATCHING WITH INHERITANCE

to real, for a function named “i_to_r”. This means that i_to_r can be used explicitly or through
coercion to convert an integer to a real.

Represented Modes, Casts, and Coercions. Both conversion functions and casting functions
take a single argument from one domain and return a value from a different domain. When the
argument and result are both representations of the same object in the same external domain, the
function is a conversion.4 When the argument type was defined by mapping it onto the result type,
or vice versa, the function is a cast.

A cast represents the relationships between two domains. Casts are used, in some languages,
by function dispatchers. Thus we want to represent them in our mode graph. A cast relationship
is created when the programmer specifies that one mode is to be represented by another. We show
it in the mode graph by noting that the type of a mode is a represented type. For example, there
is a REP link from imag to real in Exhibit 18.1, because real numbers are being used to represent
type imaginary.

Although definition and use of a conversion is often similar in syntax to a cast, the difference is
very important: a conversion preserves semantics, a cast changes them. Therefore, a conversion is
“safe” for coercion, a cast is not. A cast should never be applied unless the programmer explicitly
directs it, and even then, the uses should be restricted to the private parts of classes or their
equivalent.

Dispatching

We can view a function as a collection of methods, and dispatching as the problem of choosing the
best method for each call. Simply put, the best method is the one whose parameter domains make
the best match for the types of the actual arguments. In older languages, only a few predefined
operators had more than one defining method, and the “best match” was easy to define; a method
is best if:

• Its parameter types match the argument types exactly, or,

• No method matches the argument types exactly but for some method, every nonmatching
argument can be coerced, by a built-in conversion function, to match exactly.

The dispatching problem is much more complex in a modern language. First, user-defined
functions, as well as predefined operators, have multiple defining methods, so the dispatcher must
be written in a more general way. Second, user domains have declarable relationships to other
user domains; where a subdomain or an instantiation relationship exists, it should be used by the
dispatcher to find methods that can be inherited. Third, user-defined conversion functions must be
considered and integrated, as coercions, into the dispatching process.

A mode graph gives us a systematic way to represent domain relationships and type conversions
and, thus, forms a framework in which we can look at the dispatching problem. We will use the

4Review Chapter 15, Section 15.5, if necessary.

18.2. SUBDOMAINS AND CLASS HIERARCHIES. 549

Exhibit 18.5. Defining a subdomain in Pascal.

TYPE fingers = 1..10; { A subrange type declaration.}

VAR f1, f2: fingers;

...

readln(f1); { Integer functions are defined for fingers. }

f2 := f1 + 5; { A legal computation on subdomain fingers. }

The type declaration for finger defines a subdomain of the integers; integer operations such
as “+” and readln are defined over this subdomain.

concept of a mode graph to discuss dispatching in C++, Miranda, and Aleph, which is a newly
developed language that provides full support for generics.

18.2 Subdomains and Class Hierarchies.

18.2.1 Subrange Types

A domain D′ is a subdomain of a superdomain D if all the elements of D ′ also belong to the
domain D. Many programming languages allow the programmer to declare a new domain that is
a subdomain. In Pascal and Ada, the domain corresponding to the subrange type is a subdomain
of the domain formed by the base type [Exhibit 18.5].

The domain formed by a subrange type is the easiest kind of subdomain to implement because
elements of the subrange type and the base type have the same representation. Values from the
subrange type may be freely stored in base-type variables; base-type values may be stored in
subrange variables if they are within the defined limits of the subrange. Subrange and base-type
values may be compared directly for equality.

Functions defined for the superdomain are inherited by the subdomain; that is, any function
defined for D is also applicable to objects of subdomain D ′. In mathematics, the integers are a
subdomain of the reals which are, in turn, a subdomain of the complex numbers. Thus complex
operations are applicable to reals and real operations are applicable to integers. With Ada and
Pascal subrange types, functions defined for the base type are inherited by (applicable to) objects
in the subdomain, but not vice versa.

Any function defined for the base type could accept and process arguments from the subrange
type. We say that the subrange type can inherit these functions from the base type. No special
checking or conversion is needed to make a subrange-type argument appropriate for the base-
type function. Conversely, functions defined for a subrange type can process any values from the
base type that are within meaningful limits. Thus the base type can inherit functions from the
subdomain, and those functions will be meaningful part of the time.

550 CHAPTER 18. DISPATCHING WITH INHERITANCE

Exhibit 18.6. Diagram of a domain hierarchy.

Domains are diagrammed above their subdomains. As we travel down the links, more and more
specific information can be known about each subdomain.

officer

method:
 compute_pay

salaried
method:
 compute_pay

employee
virtual:
 compute_pay
 print_list

manager
methods:
 print_list
 do_payroll

hourly

professional

To make subdomains and these simple inheritance relationships work, a translator must include
run-time range checks to ensure that every program object stored in a subrange variable or processed
by a subrange function does actually belong to the subdomain.

18.2.2 Class Hierarchies

Smalltalk and the other object-oriented languages provide much broader support for subdomains.
They allow the programmer to define a new subdomain whose representation is semantically related
to the superdomain but is not structurally identical to it. These languages exploit the hierarchically
related nature of many external domains. Start with a classification system, such as that shown in
Exhibit 18.6. Lines connect each domain (above) to its subdomains (below). Less detail is known
about or relevant to the broad class at the top of the hierarchy, but as we move down the subdomain
links, more and more details can be specified. Each category in the diagram has its own specific
characteristics and inherits characteristics from the categories above it. These domains and their
relationships are described in Exhibit 18.7.

Altogether, we have defined five kinds of data records, where each one must contain all the
information of the domain above it, plus more. For example, a “manager” record must contain
fields for an annual salary, name, social security #, two codes, and a link, because a manager is a
salaried employee and is an employee. However, a manager’s record must also contain a pointer
to the list of employees managed. Thus although the record types that might implement these
domains are structurally different, they have semantic commonalities. A function that processes
employee data could also process manager data correctly if the data fields of the two types were

represented in a compatible order.

18.2. SUBDOMAINS AND CLASS HIERARCHIES. 551

Exhibit 18.7. A group of related domains.

Here are descriptions of the fields in the records for two kinds of employees. (These records
have a link field so that they can be organized into lists.) In a representation of these domains, the
record describing the superdomain (employee) is a subrecord of that describing the subdomain.

Domain Superdomain Information to be recorded Functions defined

Employee Name, social security #, Print employee list
dept code, job code, Print paycheck
pointer to next employee Enter new employee

Hourly_emp Employee Pay rate, hours worked, Compute pay
overtime, vacation days, Enter time card
group number Change data

Salaried_emp Employee Annual salary, Compute pay
vacation days used Enter vacation

Manager Salaried_emp List of employees managed Print list of people managed
Add new employee to list
Do payroll

Professional Salaried_emp Group number
Officer Salaried_emp List of managers managed, Permission predicate

permitted to sign checks?

An object-oriented language, such as Smalltalk or C++, permits the programmer to declare and
use this kind of domain/subdomain relationship to define a hierarchy of domains. C++ classes
were introduced in Chapter 16 as an implementation of abstract data types. Classes are also used
to implement generic domains with subdomains and function inheritance.

We will use C++ syntax and rules to explain how these class hierarchies work. Given a class,
G, we can derive a subclass G′ from G, such that G′ has all the members (data and/or functions)
of G, plus more. The C++ syntax for declaring a derived class is :

class 〈new-class-name〉 : [public] 〈base-class-name〉 { (a)
〈new-private-members〉 (b)

public:

〈new-public-members〉 (c)
};

When we use a derived-class declaration, a new class, G′, will be constructed that is a subclass
of the specified base class, G. If the keyword public is used, (line a) all the public parts of G
will also be public parts in G′; if omitted, the public parts of G will become private parts of G′.
If G has private members, an instance of G′ will contain fields for these parts, but they are not
visible to the functions defined for G′ and can only be accessed by functions defined for G (unless

552 CHAPTER 18. DISPATCHING WITH INHERITANCE

a “friend” declaration is included in G). This visibility rule supports modular data-hiding, which
is so important for achieving reliable systems.

In section (b), the private members of G′ are listed. Included here are data fields that exist for
the subclass G′ but not for the superclass G, and functions (if any) that will be used only locally,
by other functions defined for G′. Finally, additional public members of G′ are listed in section (c).
These must include all basic functions needed to operate on the subclass. Additional classes may
be derived, similarly, from either G or G′.

Exhibit 18.8 shows the C++ declarations that would implement part of the domain hierarchy
from Exhibit 18.7. To finish implementation of this hierarchy, we need to supply definitions for the
remaining class, officer, and definitions for all the functions declared in all the classes. Definitions
for these functions can be placed anywhere in the program, but good style dictates that they should
be placed just after the class declaration. The functions that must be defined are:

employee::employee employee::print_paycheck employee::print_list

employee::compute_pay salaried::compute_pay salaried::take_vacation

hourly::hourly hourly::compute_pay hourly::record_time_card

manager::manager manager::add_employee manager::print_list

manager::do_payroll

Although these method definitions are outside the class declaration, the function methods them-
selves were declared within the class, and are class members with full access privileges. The place-
ment of the function definition (before or after the end of the class declaration) makes no difference
in the semantics—the only difference is practical; definitions inside the class are expanded in-line,
like macros, those outside are compiled as subroutines. C++ functions can be overloaded, that is,
a function name can have several defining methods, belonging to several classes. For this reason,
the full name of a function method must be used when we define it outside its class. Thus we must
write hourly::compute_pay() and salaried::compute_pay, not simply compute_pay.

Representation and Visibility. A program object is created by instantiating a class, and this
action is triggered either by a declaration or a “new” command. The result is a record with one
field for each of the variables (both public and private) within the class. A derived class will be
represented by the same type of record with fields added on the end. The names of the class
variables are like the names of the fields of a record, except that more complexity is involved
because of information-hiding.

In a Pascal record, all the fields have the same visibility; that is, if one part is accessible
in a given context, then all parts are accessible. But in a C++ class, the fields corresponding to
private members have visibility restricted to the class functions, while public members have broader
visibility. When we make a derived class, fields for private members of the parent class will be part
of the record and take up space, but the names of those fields will not be known within the derived
class, and those fields will be inaccessible to new functions. However, the public functions of the
base class become members of the derived class and can be used to manipulate these fields.

18.2. SUBDOMAINS AND CLASS HIERARCHIES. 553

Exhibit 18.8. Deriving classes in C++.

Below are declarations for some of the classes described in Exhibit 18.7. Exhibit 18.6 is a
diagram of the relationships among these classes. This code is discussed throughout the rest of this
chapter. We presume that card and pay_data are previously defined classes.

class employee {

char name[], soc_sec[13], *dept_code, *job_code;

public:

employee * link;

employee(int) // The constructor; argument is name length.

void print_paycheck;

virtual pay_data compute_pay;

virtual void print_list;

void employee::print_empl()

{ cout << "Name: " << name << "\n\t" << soc_sec

<< "\tDept: " << dept_code << "\tJob: " << job_code

<< "\n";

}

}; // End of class employee.

class salaried : public employee {

int annual_salary, vacation_used;

public:

pay_data compute_pay();

void take_vacation();

}; // End of class salaried.

class manager : salaried {

employee* staff;

public:

void add_employee();

void print_list();

void do_payroll();

manager(); //The constructor function.

}; // End of class manager,

class hourly : public employee {

float pay_rate, hours_worked, overtime;

int vacation_used;

public:

pay_data compute_pay();

void record_time_card(card*);

hourly();

}; // End of class hourly.

554 CHAPTER 18. DISPATCHING WITH INHERITANCE

Limiting Visibility. It is possible to use a derived class to modify the visibility of members of an
existing class. Let us say that class G has some private members and some public members. There
is no way that deriving a class from G can affect the visibility of its private members—they may
be accessed only within G. But the public members of G may be made private in a class derived
from G. To do this, omit the word “public” from the header of the derived class declaration.
Public members of the base class then become private members of the derived class. We say that
a derived module is opaque when it completely hides its base module. A half-and-half, or semi-
opaque, situation may also be achieved. When the keyword public is omitted, you may list the
names of selected members from the base class in the public part of the derived class. This does
not create an additional field in the derived class; it simply controls the visibility of the base-class
field. The syntax is:

class 〈new-class-name〉 : 〈base-class-name〉 {
〈new-private-members〉

public:

〈base_class_name〉::〈member_name〉;
〈new-public-members〉

};

Type compatibility. If G′ has a public base class G, then an object of type pointer-to-G′ can
be stored in a pointer variable of type G∗ (pointer-to-G) without use of explicit type conversion.
For example, the class employee has a field named link of type employee*. Every instance of
class manager and hourly also has this field, because manager and hourly were derived publicly
from employee, and link is public in employee. The link field is able to store addresses of type
hourly* and manager* because these classes were derived from employee. Thus we may make a
linked list of hourly employees and store the head in a manager record.

This is a crucially important issue. The idea of a class hierarchy is that all variants of a base
class are semantically related. Even more, an instance of a derived class is an instance of the
base class, with some added information. Compatibility of pointer types throughout the levels of
a hierarchy is essential to implement this underlying semantic notion.

18.2.3 Virtual Functions in C++.

C++ contains a simple kind of support for virtual functions. A base class may contain a “virtual”
declaration, such as the print_list function in Exhibit 18.8. The intent is that a virtual func-
tion should be used where the method for carrying out some abstract process is implementation-
dependent. Let us use the term virtual class to mean a class that contains a virtual function or one
that is derived from another virtual class. All the classes in the “employee” example are virtual
classes because the base class contains one virtual function.

A virtual function must be defined for the base class in which it is declared, but it may be
redefined for any derived classes that need a different method. In our example [Exhibit 18.9] the
method for computing a paycheck is different for salaried and hourly people, and depends on data

18.2. SUBDOMAINS AND CLASS HIERARCHIES. 555

Exhibit 18.9. Calling a C++ function with two defining methods.

We define output function methods for the classes in the employee hierarchy established in
Exhibit 18.6. The method in the derived class calls both of the methods in the base class.

void employee::print_list() // Does not print head of list.

{ employee * scan;

for (scan=link; scan != NULL; scan=scan->link) print_empl();

}

void manager::print_list()

{ cout << "\n\nManager: ";

print_empl();

cout << "\nEmployees Supervised:\n";

employee::print_list();

}

that is specific to these classes. The function compute_pay is, therefore, declared as a virtual
function and defined separately for the two classes. Another application of virtual functions is to
allow a method to do some actions specific to its local class, then call the general function from
a higher class to complete the job. In our example, the print_list method for employee prints
some headings, then calls the base method, using its full name, employee::print_list.

If another class is derived from a derived class, the classes form a hierarchy. A virtual function
may be defined at several levels of a hierarchy. In this case, several methods for a virtual function
may all be applicable to instances of a class at the bottom of the hierarchy. In our “employee”
example, two methods are defined for print_list (in class manager and the base class, employee).
Both could be applied to an instance of class manager, but only the method in the base class could
be applied to instances of the classes salaried and employee.

If a function is called using its full name (class_name::function_name) there is no ambiguity,
and the call is translated in the ordinary manner. However, if a function is called without using its
class name, the call is ambiguous and must be resolved by the dispatcher. The same dispatch rule
can be used here as is used in the simple case: start at the bottom of the class hierarchy and look
up the hierarchy tree until a method is found for the function. Thus if the programmer wishes to
use a method that is not the closest one to its object’s class, the full, qualified name of that method
must be written.

It is up to the compiler and the linker to make the necessary connections between the virtual
function and its methods, and to ensure that all those methods are consistently typed. Similarly,
it is up to the translator to dispatch the correct method for a call on a virtual function. This is
complicated because the method being called might not even exist when the call is compiled, and
the actual dispatching must be done at link time or at run time.

556 CHAPTER 18. DISPATCHING WITH INHERITANCE

To understand why dispatching must be delayed, consider the do_payroll function defined
for class manager in our “employee” class hierarchy [Exhibit 18.7]. Assume that do_payroll

calls print_paycheck to print out a paycheck for each employee on the manager’s staff list. By
inheritance, we can use this function to print a paycheck for any employee, and we can call it
from the class manager. However, assume that print_paycheck calls upon the virtual function
compute_pay to get the data needed for a check. Now, compute_pay is defined differently for hourly
and salaried employees, and a manager’s staff list will generally contain both kinds of employees.
Thus at run time a single function call written in the print_paycheck function must sometimes
dispatch hourly::compute_pay and sometimes salaried::compute_pay.

This decision cannot be made until each list element is processed. Thus the type of the argument
to print_paycheck must be examined at run time. Happily, once this type is known, the simple
dispatching rule still works. In traditional compilers (such as the typical C compiler) the type
information from the declarations is put into the symbol table, used at compile time, then discarded.
Little or no type information is carried over to run time. In order to dispatch a virtual function,
though, it is necessary to have this information at run time. Some version of the translator’s type
objects must exist then, and each object must include a type pointer.

For this reason, objects belonging to virtual classes in C++ are compiled differently. A type
field (a pointer to the type object for the object’s class) is made part of every object in a virtual
class. The dispatcher examines this type field and selects the right method for an object at run
time. Thus we incur space overhead when we use a virtual class, and time overhead when we call a
virtual function.5 The benefits of virtual functions, however, outweigh these costs. Using function
inheritance and virtual functions, we can:

• Avoid proliferation of nearly identical names for implementations of the same external process.

• Avoid writing duplicate copies of code for related classes.

• Write simple code with highly flexible run-time behavior.

• Extend the benefits of strong typing to nonhomogeneous domains.

• Create class hierarchies that are easy to extend when new, related data types must be defined.

18.2.4 Function Inheritance

The real importance of the class hierarchy is that it defines a system of classes with related semantics
on which a system of function inheritance can operate. Briefly, functions defined in any class become
members of every derived class and may be applied to instances of the derived class and called as
if they were local. We say that the derived class inherits the function from its base class.

Every function call has an implied argument, which we will call the object of the call. To
translate a call, the compiler must find and dispatch the correct method for that object. The
dispatching rule is this:

5This overhead is incurred only for virtual classes. It does not reduce the efficiency of operations on nonvirtual
classes.

18.2. SUBDOMAINS AND CLASS HIERARCHIES. 557

• If a method is defined in the same class as the object of the call, the translator will dispatch
that method.

• Otherwise, move up the class hierarchy, one level at a time, looking for function-members
with the correct name. Dispatch the first method for the function that is encountered.

• Unless the function is declared to be “virtual” in the base class, there should be exactly one
applicable method in the hierarchy. If no appropriate method is found, there is a type error.

Constructors in Derived Classes. A constructor function is atypical, since we do not ordinarily
call it explicitly. Whenever the translator allocates space for a new class instance, it calls the
constructor function for that class to initialize the new storage. However, to instantiate a derived
class which has a constructor, the translator must execute two constructor functions—first, the
constructor for the base class, then the constructor for the derived class. Thus the derived class
must “inherit” the constructor from its base class.

This leads to a real problem, since many constructor functions have parameters. The header line
of each constructor definition specifies what parameters it needs, but how can the constructor for
the derived class convey the right arguments to the base constructor? The solution is to expand the
syntax of the language to allow the programmer to supply argument lists for a series of constructor
functions. Arguments for the constructor of the derived class are given in the instantiation call.
Arguments for the constructor of the base class (or classes) are given in the definition of the
constructor for the derived class. The syntax is:

〈derived_name〉::〈derived_name〉 (〈argument_list_for_derived_class〉) :

(〈argument_list for base class constructor〉)
〈initializers for base class members〉
{ 〈body of derived constructor〉 }

In the definition of the derived constructor, the programmer can use the base-class’s argument
list to pass on the derived-class arguments or to supply the base class constructor with constant
arguments. If there are several nested derived classes which have constructors, a list of argument
lists (separated by commas) is given, with the list for the most basic class first. The constructor for
the base class will be executed before the constructor for each class derived from it. (If both classes
have destructors, the destructor for the derived class will be executed before that of the base class.)

Strengths and Limitations. The classes in C++ are immensely powerful and, when used well,
can reduce both programming errors and tedious, repetitive coding work. This language is a giant
step beyond standard Pascal. Several major semantic ideas are covered here that go beyond the
traditional languages. They give C++ much of its power. These are:

• Controllable public/private data and functions.

• Declarable class relationships.

558 CHAPTER 18. DISPATCHING WITH INHERITANCE

• Functions with multiple defining methods.

• Function inheritance.

By themselves, these semantic mechanisms are somewhat limited. We briefly list these limitations
below and consider solutions in Section 18.4.

• These mechanisms do not address the problem of generic domains with representations that
are related in an ad hoc manner. The only domain relationship that can be modeled is that
between a record type and a longer record type with the same initial parts.

• All hierarchies and all function inheritance are totally tree structured; no class can have
two parent-classes. However, some external generic domains naturally form graph-structured
relationships in which a domain inherits properties from two different directions.

• During dispatching, the types of the arguments to a call are not considered. Only the class
of the object of the call is used to select a method.

• C++ is still a superset of C, and, therefore, you can get around all the visibility rules of C++
by using pointers, which are semantically insecure types in C! The problem is that a pointer
to any type can be cast to any other pointer type. This can be used to gain access to private
data.

18.2.5 Programmer-Defined Conversions in C++

With some limitations, the C++ programmer is able to define conversions that the dispatcher
can use. A class definition normally contains an ordinary constructor function, which is invoked
automatically when a new storage object for the class is allocated. In addition, the class may
contain one or more one-argument methods with the same name as the constructor. Each one is
taken to be a conversion function and must create a value of the type of the class. As with any C++
constructor, the new value is returned by assigning values to some or all of the class members—an
explicit return statement is not used in a constructor. The programmer must make sure that any
constructor with one argument is a semantically valid conversion function from the type of the
argument to the type of the class, because the compiler will use these methods, whenever needed,
for coercion.

C++ can use constructor functions to coerce arguments in simple cases. In the class complex of
Exhibit 18.10, four constructor methods are defined. The first one constructs the complex number
zero and will be used to initialize every complex variable for which no other initializer is specified.
In the example, the variable cx is initialized using this method.

The second method constructs a complex value from real and imaginary components [Exhibit
18.11]. This will be used primarily to define the member functions for the class; it defines the
relationship between a complex number and its components. It can also be used to construct
initializers for complex objects, as in line (b), and to create complex objects during execution, as
in line (d).

18.2. SUBDOMAINS AND CLASS HIERARCHIES. 559

Exhibit 18.10. Conversion functions in C++.

class complex

{ rp: float;

ip: imag;

public:

complex(){ rp=0.0; ip=imag(0.0); }

complex(float f, imag i){rp=f; ip=i;}

complex(float f){rp=f; ip=0;}

complex(imag i){rp=0; ip=i;}

complex operator-() { return complex(-rp, -ip); }

friend complex operator+(complex c1, complex c2);

friend complex operator*(complex c1, complex c2);

friend complex operator-(complex c1);

}

complex operator+(complex c1, complex c2)

{ return complex(c1.rp+c2.rp, c1.ip+c2.ip); }

complex operator*(complex c1, complex c2)

{ return complex(c1.rp*c2.rp + c1.ip*c2.ip, c1.rp*c2.ip + c1.ip*c2.rp); }

The last two methods are semantically valid conversion functions from types float and imag

to type complex. They can be called explicitly, but they will also be used by the translator to
coerce arguments in calls on complex operations. Lines (a) and (d) illustrate contexts where an
argument will be coerced. In line (a), the float number -1.6 is used as an initializer for an instance
of class imag (from Exhibit 16.10). This triggers a call on the conversion from float to imag that
was defined in class imag.

In line (d), the operator “+” is called to add a complex number and a float. This situation is
somewhat more complex. The dispatcher looks at this call on “+” and must find an appropriate
method for it. The dispatching rule in C++ is given in Exhibit 18.12. By this rule, the method
complex operator+(complex, complex) is finally selected, and the second operand, fl, is coerced
to type complex.

Programmer-Defined Casts in C++. In C++, as in C, no distinction is made between conver-
sions and casts. We have seen that a C++ class can be used to implement a mapped domain with
semantic protection against misuse. But casts are required to implement the basic functions for the
new mapped domain, and casting is not automatically defined for such a class. In this situation,
the facility for programmer-defined conversions can be used to define an upward cast. To specify

560 CHAPTER 18. DISPATCHING WITH INHERITANCE

Exhibit 18.11. Coercion with a programmer-defined function.

main()

{ float fl=2.5;

imag im=-1.6; //(a)

complex cx; // Initialized to zero.

complex dx = complex(1.0, imag(1.0)); //(b)

cx = new complex(.1, im); //(c)

cx = cx + fl; //(d)

}

the downward cast, from the class type to a representing type, an operator function may be used.
This defines the target-type name as a conversion function that can be called explicitly using the
normal syntax for casts. Both kinds of programmer-defined casts are illustrated in Exhibit 16.10,
where their use is required to define the basic functions for the new mapped class.

It is important that the two casts were defined as private functions. This means that, within the
class, the representation of a class object can be manipulated, as it must be, to make the necessary
calculations. However, outside the class, the relationship between the two domains is completely
unknown.

Exhibit 18.12. Dispatch rules for C++ overloaded functions.

1. Look for a method whose operand types match the argument types exactly.

2. If none is found, look for a method such that the argument types can be made to match the
parameter types by using no more than one predefined conversion function on each operand.

3. If none is found, and one or more operand belongs to a defined class, look for a method such
that the argument types can be made to match the parameter types by using no more than
one user-defined conversion function per operand.

4. If more than one possible way to do user-defined conversions is found, or if none is found, the
dispatch fails.

18.3. POLYMORPHIC DOMAINS AND FUNCTIONS 561

18.3 Polymorphic Domains and Functions

18.3.1 Polymorphic Functions

A polymorphic type is a single type definition that includes two or more alternative specific type
declarations. A polymorphic object is the representation of one of these species along with some
form of discriminant field that encodes which species is present.

It is important to understand the differences between polymorphic functions and the generic
arithmetic operators in languages such as Pascal and Ada. The generic nature of the Pascal operator
extends only until compile time; the compiler then chooses a specific method to implement the
operator. Thereafter Pascal code is fully specific. A polymorphic function does run-time type
checking, when necessary, and a language with good support for polymorphism will do this checking
automatically. For example, APL is an array-oriented polymorphic language which tags each data
object with a type field that describes the number and extent of its dimensions. The programmer
may write an APL function, say Fun, to operate on a pair of numbers. The programmer may then
call it with a simple pair of numbers or with two equal-length arrays of numbers. The shapes of the
actual arguments are tested automatically, and the translator executes appropriate code. It will
apply Fun once if given a simple pair of numbers, but apply it repeatedly to each corresponding
pair of elements if given two arrays.

The Pascal variant record is an early attempt to implement limited polymorphic types. It
permits the programmer to specify that objects of the type may have a variety of different sizes
and structures. However, it is not a very satisfactory implementation of polymorphism for two
reasons:

• When creating a polymorphic object, storage is allocated for the largest variant, even when
the value stored there is much smaller.

• The theoretical semantics of variant records are not enforced by the translator, and run-time
tests of the discriminant field must be coded manually.

More modern languages have extended this idea and addressed the problems.
A polymorphic function is a function that accepts arguments of a polymorphic type. It tests

the argument at run time to determine which variant is present, then executes code appropriate
for that argument. These run-time type tests might be automatically generated by the translator
or explicitly written by the programmer.

Polymorphism becomes very important in functional languages because they support higher-
order functions. A higher-order function, often called a functional, may take functions as parameters
and/or produce a function as its result. Some familiar functionals are functional composition and
reduce [Exhibit 12.15]. But, in a typed language, functionals are almost useless unless they are
polymorphic. Thus higher-order functions have been a strong motivating force in the development
of polymorphism in functional languages.

Even a language with little or no support for domain checking may be extended to perform
polymorphic domain checking manually. To accomplish this the programmer would explicitly attach

562 CHAPTER 18. DISPATCHING WITH INHERITANCE

Exhibit 18.13. Manual polymorphic dispatching in Ada.

In older languages, we use manual type-testing to write code to process a polymorphic type. The
Ada procedure below might be written to print out an item belonging to the polymorphic type
Person that was defined in Exhibit 14.25. In this type, the field named “Sex” is the discriminant
tag. We explicitly test the contents of this field and dispatch one of three specific functions.

PROCEDURE Print_Person (Who : Person) IS

BEGIN

CASE Who^.Sex IS

WHEN Male => THEN Print_Male(Who);

WHEN Female => THEN Print_Fem(Who);

WHEN OTHERS => Sex_Error(Who);

END CASE

END Print_Person;

some type information to every data object, then explicitly include code in the function definitions
to test this type field.

18.3.2 Manual Domain Representation and Dispatching

Before looking at a modern implementation of polymorphic domains, let us see how polymorphism
might be implemented manually in an older language. An ad hoc polymorphic domain is the
discriminated union of two or more specific types. If an object OB belongs to an ad hoc polymorphic
domain, PD, then its value at run time may belong to any specific type included in PD. It is not
possible to predict, at compile time, which specific type this will be. However, at run time, the
specific type of any object is known.

In some languages, for example, Pascal, an ad hoc polymorphic domain may be implemented
as a variant record with a tag field. Exhibits 14.25 and 14.24 show a polymorphic type declared
in Ada. However, neither Ada nor Pascal supports the run-time type checking that is necessary to
ensure valid use of such domains. To process polymorphic objects, we must write code, such as
that in Exhibit 18.13, which explicitly tests the tag field and branches appropriately.

Explicit Domain Testing versus Strong Typing. Achieving semantic validity is the purpose
of both strong typing and explicitly testing the discriminant tags on a polymorphic type. However,
there are some major differences between the results achieved by the two systems.

On the practical side, explicit type-testing can get to be cumbersome. It forces the programmer
to write out, in every function definition, the instructions to check the discriminant tag of the
argument and produce an error comment if there is a mismatch. A strongly typed language handles
this kind of domain checking automatically for simple types; the programmer needs only to declare

18.3. POLYMORPHIC DOMAINS AND FUNCTIONS 563

a domain name for each object and parameter.
Second, polymorphic type checking both permits and requires domain testing to be postponed

until run time. On the one hand, simple strong-type-checking, which happens at compile time, is
significantly more efficient if the program is ever used to process a lot of data. Run-time checking
is time consuming. On the other hand, run-time domain checking is inherently more powerful and
flexible. It permits the domain-checking system (or the programmer) to make finer distinctions
between appropriate and inappropriate arguments. A run-time test can depend on the actual data
values, not just on the declared type of the argument. For example, in Pascal, strong-typing ensures
that a list-processing function will always get a list argument. In Miranda, automated polymorphic
domain testing can distinguish lists from nonlists but can also be used to distinguish lists containing
data from null lists.

18.3.3 Automating Ad Hoc Polymorphism

Polymorphic Domains

The modern functional languages have more advanced support for generics than any existing lan-
guages in the ALGOL family. This support comes at two levels:

• User-defined domains may be ad hoc polymorphic. A domain may have several alternative
representations, like a discriminated union type. Functions can be written that test the
discriminant automatically and dispatch the appropriate code.

• A generic type may be defined with a type parameter, and functions may be defined with
generic parameters of this sort. (These are covered in Section 18.4.)

We use Miranda to illustrate these powerful general definition and dispatching methods. A type
definition is written using the symbol “::=”, which we read as “is type”. A polymorphic type
declaration consists of a series of clauses separated by the “or” symbol, “|”, which correspond to
the alternatives of a discriminated union type in Ada or Pascal. Each clause has a discriminant
name followed by a tuple of type specifiers, much like a simple Pascal record declaration. The
discriminant names can be used either as constructors, for making an object of that type out of
appropriate components, or as type predicates, when defining a function for the type.

In Exhibit 18.14 we use Miranda to define tree, a polymorphic type. The notes for this example
follow:

a. We define the type tree. A tree may be a leaf, which is an integer, or a node which is a tuple of
two trees. This declaration defines the discriminant tags Leaf and Node, which we use later
as object constructors and as type predicates.

b. We construct a tree of the first form, using the constructor Leaf. Note that the tag name is
part of the constructed object—the result of this line is that the name leaf1 is bound to a
two-tuple consisting of the tag Leaf and the number 3.

564 CHAPTER 18. DISPATCHING WITH INHERITANCE

Exhibit 18.14. A tree type in Miranda.

We define an ad hoc polymorphic type named “tree”. This also defines the constructor/predicate
names “Leaf” and “Node” for the two variants of type tree. The last two lines construct two trees
named leaf1 and tree1. The letters on the right key the code to the notes in the text.

tree ::= Leaf integer | Node tree tree (a)

leaf1 = (Leaf 3) (b)

tree1 = (Node leaf1 (Node (Leaf 17) (Leaf 49)) (c)

c. We construct two leaves, as in the line above, and use them immediately to construct one node.
That node is, in turn, combined with the previously constructed leaf, leaf1, to make a tree
named tree1. The structure of this tree is shown in Exhibit 18.15.

Unlike Pascal, part names for the fields of a tuple are not supplied in the type declaration, and
the new type name may be referenced recursively in the declaration. The lack of defined part names
requires explanation. In Miranda, the type of an object is not part of the object, as in APL, nor is
it part of a name, as in Pascal. Types are deduced from the structure of objects. Field names, in
turn, are not part of the type definition. When an object is passed as an argument, a sophisticated
type-deduction algorithm6 is used to check whether it belongs to the domain of the function. The
tuple- or list-structure of the argument is checked, along with the types of its simple components.
As part of this checking process, dummy parameter names, defined in the function header, are
associated with each field of the argument. These are temporary and local, like parameter names
in traditional languages, and are used to access the fields of the argument within that function.
Thus the two parts of a pair may be called “left” and “right” within one function body and
“head” and “tail” in another.

6This algorithm is derived from the work of Hindley and Milner. Cf. Milner [1978].

Exhibit 18.15. A tree with polymorphic nodes.

leaf1 3

After line b. Middle of line c.

1 7 4 9

After line c.

leaf1 3

tree1

1 7 4 9

18.3. POLYMORPHIC DOMAINS AND FUNCTIONS 565

Exhibit 18.16. Polymorphic dispatching in Miranda.

We define and call a polymorphic function named max-tree with methods to process both kinds of
trees (nodes and leaves). The letters on the right key the example to the explanation in the text.

max-tree (Leaf ldata) = ldata (a)

max-tree (Node n1 n2) = max1, max1>max2 (b)

= max2, max2>max1 (e)

= max1, otherwise

where (c)

max1 = (max-tree n1) (d)

max2 = (max-tree n2)

Evaluating (max-tree leaf1) yields 3, and evaluating (max-tree tree1) yields 49.

Miranda permits us to write functions over ad hoc polymorphic domains, like tree, that will
be domain-checked and dispatched automatically. A function definition is written as a series of
methods, each one defined for a different subdomain. The domain predicates are called patterns

and are written on the left. A pattern can specify an argument type, a discriminant tag (called a
constructor in Miranda), and/or data values. Following the pattern is an “=” and the appropriate
computation method for that particular subdomain. In Exhibit 18.16, we define a simple function
that processes the tree type defined in Exhibit 18.14. Following are line-by-line notes for the code
in the exhibit:

a. On this line and the next, the discriminant tags defined by the type declaration are used as
domain predicates (left), controlling the choice of computation methods (right). Line (a)
defines the function max-tree for any argument which matches the type named “Leaf”.
Within the body of the method, the single component of a Leaf will be called “ldata”. The
value of the expression on the right will be returned as the value of the function. This code
states that the maximum of a Leaf is the number stored in it.

b. The remaining code defines max-tree for arguments that are tuples with two fields. These fields
are named “n1” and “n2” within the method body.

c. The “where” clause defines a local context for this method, containing local names “max1” and
“max2”. When the outside-in, lazy evaluation process reaches the first reference to max1 or
max2, the expression following the name in the “where” section is evaluated and the result is
bound to the local name. This value remains bound to the name throughout evaluation of the
block; subsequent references to the name refer to the value computed for the first reference.

d. The function max-tree is called, recursively, with the left field subtree as its argument. The
maximum value in the left subtree is bound to the name “max1”.

566 CHAPTER 18. DISPATCHING WITH INHERITANCE

Exhibit 18.17. Dispatching a Miranda call using data values.

sum-list [] = 0

sum-list (a:ls) = a + sum-list ls

We recursively sum a list by adding the value of the first list item to the sum of the rest of the
list. If list1 = [3, 4, 17, 9, 5] and we evaluate sum-list list1 the result is 38.

e. This guarded expression compares the two maxima of the left and right subtrees and returns
the greater.

This automated run-time dispatching of function methods is implemented by a very general
and powerful pattern-matcher. It is not limited to checking for subtypes of a polymorphic domain,
but can also perform run-time checks involving the values of data objects. For instance, Exhibit
18.17 has one method defined for null lists and another method defined for lists with at least one
component.

Exhibit 18.18 summarizes and gives examples of the kinds of patterns that the Miranda program-
mer may use to define methods. Dispatching a function call is done by a run-time case analysis,
examining each pattern in turn, until one is found that matches the structure and/or value of the
actual argument. When a match is found, the dummy names used to write the pattern are bound
to the parts of the argument, and these bindings are used within the function body. Exhibit 18.19
shows the bindings that would happen for some calls on the functions sum-list [Exhibit 18.17],
max-tree [Exhibit 18.16], and pow10 [Exhibit 12.20].

The important principle here is that the dispatch is done at run time, distinguishing it from
anything that can be done with nonunion types in languages such as Pascal and Ada. It is true
that an Ada programmer can emulate run-time dispatching by using a discriminated union type
and coding the dispatching process manually, as in Exhibit 18.13. However, manual type checking
is never as convenient or as safe as checking that is built into the semantic basis of the language.
The Miranda function definitions using pattern matching are far clearer and more elegant than
corresponding Ada code.

Exhibit 18.18. Pattern construction in Miranda.

Pattern type Example

constant factorial 0 = 1

number greater than 0 factorial (n+1) = (n+1)*factorial n

null list sum-list [] = 0

nonnull list sum-list[a:x] = a + sum-list[x]

tuple max-tree (Node n1 n2) = ...

18.3. POLYMORPHIC DOMAINS AND FUNCTIONS 567

Exhibit 18.19. Binding during the pattern match.

Data object definitions:

type name value

tuple leaf1 = (Leaf 3)

tuple tree1 = (Node leaf1 (Node (Leaf 17) (Leaf 49))

list list1 = [1, 3..11]

list list2 = []

integer numb1 = 17

The functions below were defined in Exhibits 12.15, 12.20, 18.16, and 18.17.

Call Bindings

max-tree leaf1 ldata is 3
max-tree tree1 n1 is leaf1, n2 is (Node (Leaf 17) (Leaf 49))

max-tree numb1 Pattern match fails.
max-tree list1 Pattern match fails.
pow10 numb1 n is 16.
sum-list list1 a is 1, ls is [3, 5..11].
sum-list list2 Pattern matches null list, no binding necessary.
reduce ’+’ list1 0 f is ’+’, a is 1, x is [3, 5..11], and n is 0.

18.3.4 Parameterized Domains

Miranda is a strongly typed language. Every object has a type, even though it is not declared. The
type is deduced from the structure of the object. Functions, also, have types which are deduced
from the function code. If a function is called with an argument whose type is inconsistent with the
function definition, a compile-time error comment is generated. The programmer may also choose
to declare the type of a function, in which case a compile-time error is produced if the declared
type and the deduced type do not match.

Names may be defined for types and used as a notational convenience. The names carry no
semantic meaning in themselves but are simply a shorthand for the structural description.7 To
define a type name, you use the “==” sign:

〈typename〉 == 〈type expression〉

Miranda supports domains with type parameters and provides a notation for talking about a
type parameter. Ordinary types are expressed structurally, as shown in Exhibit 18.20. The type
of a list is denoted by writing the type of its elements inside list brackets; the type of a tuple is
written as a tuple of types. The type of a function is written in curried notation, starting with the
type of the first argument and ending with the type of the result.

Type parameters are denoted by strings of asterisks. If a type expression has one type parameter,

7See the discussion on type identity in Chapter15, Section 15.4.

568 CHAPTER 18. DISPATCHING WITH INHERITANCE

Exhibit 18.20. Miranda type expressions.

Assume T, T1, etc. are types. Then we can write the following type expressions:

Expression Interpretation

[T] A list with elements of type T.
[[T]] A list of lists of elements of type T.
(T, T1, T2) A tuple of three elements of types T, T1, and T2.
T → T1 A function with argument type T and result type T1.
* → * A function whose argument and result have the same type.
[*] → * A function that returns an element of the same type as the

base type of its list argument.
* → ** → ** A function of two arguments whose result is the same type

as the second argument.

we write “*”; for an expression with three distinct types, we write “*”, “**”, and “***”. If a type
expression uses the same type parameter symbol twice, it means that both occurrences must be
replaced by the same argument. For example, the type of the subscript function is:

! :: [*] → num → *

Abstract Data Types. Miranda supports code modules analogous to the generic packages in
Ada, except that Miranda’s type parameters are not bound at compile time, so it is capable of
true run-time generic behavior. A Miranda script may contain the directive to “%include” the
script in some other file, or a directive to “%export” some locally defined symbols. Scripts may
have parameters, just as in Ada, and a parameterized script must be instantiated by supplying
arguments in the “%include” command.

An ADT, called an “abstype”, is declared by specifying the ADT interface (public symbols)
followed by the definitions of those symbols (private part). Exhibit 18.21 declares a stack ADT
with a single type parameter for the base type of the stack. The stack itself will be represented
by a list. The rules for type compatibility and access to private parts are very similar to those
in C++ classes; within the scope of the declaration, the type “stack *” is considered to be just
the same as the type “[*]”, and the implementation equations may access it using the ordinary
list operations. Outside the abstype declaration, though, a stack may only be accessed using the
declared functions.

18.4 Can We Do More with Generics?

We have looked at a variety of languages that support generic and/or polymorphic functions. It is
appropriate, now, to look back and compare these facilities, to analyze strengths and weaknesses,
and to ask whether a language could do more.

18.4. CAN WE DO MORE WITH GENERICS? 569

Exhibit 18.21. The ADT “stack” in Miranda.

abstype stack *

with empty::stack *

isempty::stack * → bool

push :: * → stack * → stack *

pop :: stack * → stack *

top :: stack * → *

stack * ==[*] || A stack is a list of anything.

empty = [] || A literal stack, to start things off.

isempty s = (s=[]) || A null list represents an empty stack.

push a s = (a:s) || Append the new item to the head of the list.

pop (a:s) = s || Remove list head and discard; return changed stack.

top (a:s) = a || Return the list head, don’t change the stack.

Binding time, Flexibility, and Efficiency

The binding time for type variables is the first and biggest difference among the languages we have
studied. Ada, C++, and Miranda all support some sort of generic behavior. However, Ada’s generics
are much simpler, more efficient, and less flexible. Ada does not need a dispatcher at all, because
the programmer binds specific names to instantiations of generics, and uses those specific names
when writing the code. The result can be fully compiled, and is easy to compile, but it does not
permit any run-time variability at all. For example, variable-length strings are quite clumsy to
manage in Ada.

Contrast Ada to Miranda. Variable-length lists are used everywhere in Miranda programs, and
polymorphic tuple types exist at run time. The idea of “type” is defined in Miranda so that a single
type includes more than one specific representation. The Miranda compile-time dispatcher verifies
that a function is defined for the type but does not worry about which representation of the type
will be present later. The run-time-dispatcher examines the actual arguments and dispatches the
particular method that matches the argument. Many Miranda functions do repetitive processes
on data structures built from polymorphic tuple types. The run-time dispatching is essential to
support this, since the method selected will differ from one call to the next, depending on the shape
of the data structure.

Miranda’s run-time variability makes a language that is flexible and easy to use; strong typing
ceases to be a barrier between the programmer and his or her work, and becomes a pure asset.
The cost, however, is execution speed. Repeating the pattern match for every repetition of every
function is a great deal slower than doing it once at compile time.

The C++ compiler takes a middle course. It makes a distinction between function calls for
which complete information is known at compile time and those where some run-time variability

570 CHAPTER 18. DISPATCHING WITH INHERITANCE

can possibly exist. In the former case, fixed code is compiled, as it would be in C. In the latter case,
the run-time dispatcher is called. (Review the discussion of virtual functions in Section 18.2.3.)
Using a mixed strategy like this seems to be the best strategy, although it is also the most difficult
to implement.

The real problem with a mixed strategy is deciding what can and what cannot be known or
deduced at compile time. C++ solves this problem simply by deciding that any computation that
involves a virtual function will be dispatched at run time. Ordinary functions will be dispatched
at compile time. This works to achieve reasonable efficiency only if the use of virtual functions is
relatively unusual.

Defining and Representing a Generic Function

In a traditional language, we know what a function is; it is one body of code, with one type. This
situation becomes complicated when we deal with generic functions, and we need to decide what a
function is and what can be done with functions.

We need to distinguish between the situation in which a function name is overloaded, that is,
used for two unrelated methods, or truly generic. A function is truly generic if the translator knows
about more than one method, knows the methods are related, and uses that relationship in the
dispatching process.

In comparing generic languages, we see different approaches to the question of “what is a
function?” In Miranda, a function can have several defining clauses, giving it polymorphic behavior,
but everything relevant to one function is defined in one place. Miranda functions are first-class
objects that can be passed to other functions and created dynamically. When we pass a functional
argument, this entire polymorphic unit is passed.

In contrast, C++ virtual functions are defined in bits and pieces, with each method “inside”
a different class. A constructor function, on the other hand, may have multiple definitions in the
same class. Finally, built-in functions (casts, arithmetic operators) have several definitions and are
not included in a class at all. Methods for these functions are defined piece by piece, as needed. It
is not necessary to know about or edit prior definitions of a function in order to extend the function
to handle a new submode type; the new method is simply included where it is needed.

Both constructors and virtual functions are true generic functions, not simply overloaded names.
The constructors in a class all bear a semantic relationship to each other; they all return an object
of the type of the class. The methods for a virtual function also are semantically related, even
though they are defined at different times and may be written by different people and compiled in
different code modules. In Miranda, this would not be possible; the methods for a virtual function
would all have to be collected and written in one place. Thus the C++ approach for defining a
generic function has a definite advantage for writing large systems.

A generic function is a collection of methods, each one defined over a different subdomain of a
generic domain. Some languages (such as Miranda) require the methods to be lexically grouped on
the page, in other languages they are semantically grouped by the translator (like Ada’s arithmetic
operators), in yet others they are tucked into classes and accessed through the class hierarchy so

18.4. CAN WE DO MORE WITH GENERICS? 571

that the methods are never connected together or treated as a unit (like virtual functions in an
object-oriented language).

Operations on Generic Functions

Let us consider a generic function to be a list (not ordered) of methods. You may picture it as a
linked list of code modules. There are three operations that we would like to define for a generic
function: passing it as an argument, dispatching it, and executing one of its methods.

When passing a generic as an argument, do we pass the entire unit (including all the methods),
as in Miranda? Or do we pass a single method? Passing an entire function is only meaningful
if we have a run-time dispatcher. In Ada, we sometimes pass a function as an argument when a
package is instantiated. If we wish to send “+” as an instantiation parameter, Ada permits us to
name the entire function as the argument; it does not require that we denote a single method for
“+” [Exhibit 17.20]. An Ada instantiation argument is passed at precompile time and is substituted
in the package before Ada’s compile-time dispatcher works on the code. This is not the same as
passing an entire function at run time. Functional parameters in C must be single methods, because
no run-time dispatcher exists to handle a whole functions. Miranda scripts can pass entire generic
units at run time because all dispatching is done at run time.

Then consider dispatching; the dispatcher selects one method for each generic function call, if
an appropriate method exists. The compiler must keep the methods for a function in some sort of
data structure so that it can search all possibilities during dispatching.

A class hierarchy forms a convenient data structure for organizing the methods of a function.
The dispatching algorithm is easy to write if each method is attached to a class and no class has
more than one method for the same function. The algorithm searches for a method starting at the
class of the first (implied) argument and crawls up the class hierarchy tree until it either finds a
method or comes to the base class. In C++, the base class is required to have a method for each
virtual function, guaranteeing that the dispatch will never fail at run time. (This restriction is not
necessary, though.)

Handling methods that are not attached to classes is more difficult, as is handling functions
that have multiple definitions within one class. To make sense of this, the dispatcher must examine
a list of methods, looking at the type of each method. If the type of each argument matches the
declared type of the corresponding parameter, the method may be dispatched. We need to define
precisely what “match” means, and what happens if no match is found, or if more than one is
found.

18.4.1 Dispatching Using the Mode Graph

Consider a generalized dispatching algorithm in which generic functions are represented as lists of
methods, and the dispatcher can move around the entire mode graph, including submode links,
binding links, and conversion links. This kind of dispatching algorithm is used in two current

572 CHAPTER 18. DISPATCHING WITH INHERITANCE

research languages, Haskell8 and Aleph9 In the rest of this section, we will refer to this generalized
algorithm as the Dispatcher, with a capital letter.

Dispatching starts with a particular function (a list of methods) and a particular context for the
function call. The context is formed from the types of the actual arguments and (possibly) the type
of object that the function must return. The Dispatcher examines each method for the function,
in turn, and either eliminates it, selects it, or puts it on a short list for future consideration.

In an object-oriented dispatch, the only part of the context that is considered is the type of
the implied argument. This is easy to implement, but it is limited and can handle only simple
dispatches. Even in the examples we have seen, it is inadequate to handle the problem of two
constructors in one class. A more general and symmetric dispatcher would consider the types of
all the arguments, as C++ does with constructors, and as the Miranda dispatcher does with all
functions. The Dispatcher will consider each argument, in turn, and select a method only if all
arguments match or can be coerced to match. Functions such as constructors, which can have
different methods for different combinations of arguments, will be dispatched correctly.

Matching. Dispatching one argument reduces to the problem of finding a path through the graph
from the mode containing the type of the argument to the declared mode of the parameter. The
dispatcher will start at the argument mode, search up IS links and BIND links and across CONV
links, trying to reach the target mode. Unlike C++ dispatching, the Dispatcher is not limited to
using a single CONV link, and it can use CONV links in combination with the other links.

Using conversions freely brings up the question of semantic validity. What is there to prevent a
string of conversions from distorting the meaning of the argument beyond recognition? This issue is
the reason that we must distinguish carefully between casts and semantics-preserving conversions.
A cast is a semantically invalid operation, done only to access the underlying representation for
bootstrapping purposes. Casts should never be used freely and never to coerce arguments. Any
chain of conversions that goes through two casts is almost certainly semantically invalid. This puts
a burden on the programmer to distinguish which functions represent casts, and which are valid
conversions, then leave the casts out of the mode graph. So long as all links in the mode graph are
individually valid, the combination of those links should also be valid.

With a class hierarchy, there is only one way to travel from one class to another: up the tree
toward the base class. In contrast, a mode graph is an arbitrary graph; one mode can have two or
more IS links leading out of it and also have CONV links. We can consider CONV links to be more
costly than the other links. The dispatcher must therefore consider more than one path from the
starting point to the goal, and dispatching becomes a process of finding the shortest path through
a weighted graph, not just traveling up a tree structure.

Where the types of objects are fixed at compile time, all of this work can be done by the
compile-time Dispatcher, which then replaces the ordinary type checker. The Dispatcher identifies
a type error when the compile-time dispatch fails to find any applicable methods. Where the

8Hudak et al. [1992].
9A. Fischer and M. Fischer [1973], A. Fischer [1985], and A. Fischer and R. Fischer [1992].

18.4. CAN WE DO MORE WITH GENERICS? 573

Exhibit 18.22. Mode graph for points on a plane.

Point
Promises: Const:
 Read Zero
 One

Methods:
Read(polar)
Rotate(polar, real)

I S
polar

record 8 bytes
2
0, 4
r, theta
real, real

Methods:
Read(carts)
Write(carts)
Translate(carts, real, real)

carts

record 8 bytes
2
0, 4
x, y
real, real

I S

CONV c_to_p

CONV p_to_c

types of objects may retain some run-time variability, the Dispatcher can still identify total type
mismatches and eliminate many methods as possibilities. Sometimes, though, more than one
method is potentially applicable; in this case, the compile-time Dispatcher must return a short list
of potential methods, to be further culled by the run-time Dispatcher.

Generics Make Some Problems Easy. Let us define a sample generic mode and show how
dispatching would work on it. Assume we are writing a graphics program, in which we are con-
cerned with representing and manipulating points on the plane. There are two good methods for
representing points: in Cartesian coordinates, as (x, y) pairs, or in polar coordinates, as (r, theta)
pairs. Selector functions x and y are defined for type carts, and r and theta are defined for type
polar. Note that selectors are ordinary functions and can be called using ordinary function syntax,
even though they are defined as part of the type declaration. This program will need to do many
operations on points, including rotation, translation, input, and output. Either representation can
be converted to the other using trigonometric functions or square roots.

Translation, that is, moving the point up, down, or sideways, is easy in Cartesian coordinates
but difficult in polar. Rotation, that is, moving a point in a circular arc around the origin, is easy in
polar but not Cartesian. Output must be in Cartesian, because the terminal screen uses Cartesian
coordinates. Some input is in polar, other in Cartesian. The program must use both representations,
and the programmer would like to have both available but not worry about representation all the
time.

The mode graph for these types is shown in Exhibit 18.22. The generic mode, point, promises
the function read and has two typed submodes, carts and polar. Any “point” data structures

574 CHAPTER 18. DISPATCHING WITH INHERITANCE

Exhibit 18.23. Generic calls.

VAR p1: polar;

c1: carts;

Read(c1); ~~ No problem: Read is defined for type carts,

Read(p1); ~~ and also for type polar.

If theta(p1) ~~ The selector theta returns a real.

> theta(c1) ~~ The Cartesian argument is coerced to polar.

then Write(p1) ~~ The polar argument is coerced to Cartesian.

else Write(c1); ~~ Write is defined for Cartesian.

and functions in the surrounding program are declared in terms of the generic mode, point.
Note that both submodes are represented by pairs of reals, but neither type must ever be cast

to the other, because their semantics are totally different. A package for ADT point will contain
private type declarations for the two point representations and public definitions for the ADT
functions. There would also be two data objects (or constant functions) for each type, named Zero

and One.
Exhibit 18.23 illustrates the power of this generic language to simplify the programmer’s task.10

Two variables are declared and data values are read for them. The Dispatcher examines the methods
defined for Read and chooses the appropriate ones for the two Read commands. The If statement
then applies the selector function theta to both points, causing the point c1 to be coerced before
the selection can be done. One of the Write statements also coerces its argument.

Everything in this example can be dispatched at compile time. Even though Read is a virtual
function, it is only used with arguments whose type is fixed and known at compile time, permitting
the Dispatcher to identify the correct methods and necessary conversions. Contrast this situation
to the problem in Section 18.2.3 which illustrates the need for run-time dispatching. In that
application, cells of differing specific types were linked together in one list by pointers with a
generic base type. In that case, we could do compile-time dispatching on pointer operations but
we still needed run-time dispatching for operations on base-type objects.

This small example is a little artificial, but it illustrates that the programmer using a generic
language is, indeed, freed from constant concern about which representation is being used at the
moment. In a real program, there would be some reason why a particular point would be represented
one way or another, and the time spent performing conversions would be useful. The gain, over
traditional languages, is that the programmer can think in terms of the semantics of points, not the
semantics of carts and polar. The resulting code denotes the job of computation more clearly,
uncluttered by constant nuts-and-bolts conversion commands.

10The syntax used here is Pascal-like, so that readers will understand it readily. However, you could certainly not
write this code in Pascal!

18.4. CAN WE DO MORE WITH GENERICS? 575

Exhibit 18.24. Using generic pointers.

P Q R

4 . 3 1 7 8 2

Number * P, Q, R;

18.4.2 Generics Create Some Hard Problems

Dispatching Pointer Arguments

An interesting question arises when we declare a type that is a pointer to a generic type. For
example, let P, Q, and R be of type “pointer to Number” (see Exhibit 18.1) and assume that
they have been initialized to point at values as shown in Exhibit 18.24. Now assume we dereference
the pointers and add the results by saying P^+ Q^ or Q^+ R^. At first glance, it seems that these
additions should be straightforward; the promises guarantee that “+” will be defined for all Numbers,
and P, Q, and R have the same type.

Looking again, though, we see that the things that P, Q, and R point to may or may not
have the same type! Here is a situation in which dispatching must be delayed until run time.
The compile-time Dispatcher must make a short list of all the methods for “+” defined on sub-
modes of Number, and the particular method to be used must be selected at the last moment.
In our example, the method “+(real,real):real” will be selected for the first addition and
“+(integer,integer):integer” will be selected for the second.

A second problem involves possible run-time type incompatibilities. The promises for Number

guarantee that every submode will have a definition for “+”. However, “+” is a dyadic function, and
these definitions all require that the two arguments to “+” have the same specific type. No methods
at all are defined for mismatched operands, like P^+ Q^ in the example. These are supposed to be
handled by the coercion mechanism, and in this case, they would be. The integer operand will be
converted to real by the CONV function i_to_r. But without the conversion links between the
submodes, the computation could not be done, and the dispatch would fail. To avoid run-time
errors, the programmer must provide enough CONV links to define the relationships among all the
submodes of a generic mode.

Using Generic Definitions

One of the attractions of generic dispatching is that functions defined “high” in the mode graph,
for high-level generic modes, can be inherited by all the submodes below them. Inheritance works
much as it does in a class hierarchy. But when we use a high-level generic method definition, there
is a problem with knowing the type of the result. The method definition can only define the result
type in terms of the generic mode to which it is attached. However, when this definition is used,

576 CHAPTER 18. DISPATCHING WITH INHERITANCE

Exhibit 18.25. What type is returned?

k: integer;

r: real;

v: vector;

...

r := v ! k ;

Parameterized mode:
Array(N:integer, T: type)

array-
 type

N*sizeof T byt es
1..N
sizeof T bytes @
T BIND

 N is 3
 T is real

array-
 type

12 bytes
1..3
4 bytes @
real

VECTOR

it is used with a specific type object, and we would like to know the specific type of the result, not
just its generic category.

If we lose track of the specific type that results from an operation, no more compile-time
dispatching can be done with that result; all further dispatches for the entire expression must be
done at run time if they involve the result of the generic. Unless there is a way to keep track of the
specific types involved, generics become too impractical to use extensively, defeating their purpose.

Let us look at one example of this problem. Assume an object belongs to a typed mode, Vector,
which was derived from a parameterized mode, Array(N,T). Vector is connected to Array by a
BIND link that gives the bindings N=3, T=real [Exhibit 18.25]. The generic function Subscript

(written with the symbol “!”) is defined for mode Array and has the type:

! :: Array(N, Any) → integer → Any

where mode Any is the predefined supermode of all modes.
What type is returned when we call Subscript on a Vector? The Subscript function was

defined to return mode Any. We know, though, that it will return a real in this case, and it is
important for the compile-time dispatcher to be able to use that fact to compile Vector expressions.

This is one instance of a very general and difficult problem that arises with parameterized
generic modes. We must be able to keep and pass on the specific attributes of the submodes if
generic functions defined for supermodes are to be useful. Of course, Subscript is predefined in
all languages on all array types and is treated as a special case; the programmer does not have to
define it. However, a powerful generic language should permit a programmer to redefine subscript
or to define other functions of this general nature.

To address this specific/generic problem, a language and its translator must have three things:

1. A general type notation that lets the programmer specify type constraints when she or he
uses generic modes to declare a function type. For example, the programmer must be able to
state that one argument must be the same type as another, or must have a specific structural
relationship to another argument’s type.

2. Both the dispatcher and the programmer must have access to the information on the BIND
links and in the type objects of typed submodes. Type operations such as “type of ”, “value
of binding”, and “dimension of” must be supported.

18.4. CAN WE DO MORE WITH GENERICS? 577

3. The dispatcher must perform type calculations, using these type operations. The purpose of
these calculations is twofold: to guarantee that any specified type constraints are obeyed, and
to deduce the most specific information available about the return types.

In the discussion of Miranda, in Section 18.3, we saw the use of the symbols “*”, “**”, etc.
to denote mode variables, and mode expressions such as “[*]” to denote a list of a generic type.
These asterisk symbols and expressions serve purpose (1), above; they permit the programmer to
specify constraints (for example, “is the same type as” and “is a list of base type the same as”) in
a generic function declaration.

Requirement (2), above, is partially met in Ada by providing many predefined type operations
which, essentially, let the programmer (or the system) access most of the fields of a type object.
Using this information, a programmer-defined function could do things that are built in and non-
extensible in traditional languages, such as bounds checks, variations on the subscript function,
and the like.

Miranda accomplishes part of goal (2) by permitting the programmer to specify patterns for use
by the dispatcher. What seems to be missing is the ability to access the instantiation parameters
for parameterized modes. (Ada does not have this problem because all instantiation is done before
the program is compiled, and a program has full knowledge of the instantiation parameters used.)

Requirement (3) is invisible to the programmer; it does not affect the language syntax or the
list of defined operations. However, it affects the semantics in a major way. A dispatcher that is
able to do this will permit much more general use of generics and still be able to maintain strong
typing.

Mechanisms like these form part of the semantic basis of Haskell and Aleph, and are sure to play
a central role in languages of the future.

Exercises

1. Why can’t we use two structurally dissimilar types to represent one external domain in a
traditional strongly typed language?

2. How do generic functions solve this problem?

3. What is a generic mode? How is a generic mode different from a C++ base class?

4. How do Ada’s predefined modes limit the programmer?

5. What are submode links? Promises? Supermodes?

6. Why are domains with multiple representations less practical to use than domains with a
single representation?

7. What is the danger of providing a general coercion facility?

578 CHAPTER 18. DISPATCHING WITH INHERITANCE

8. Why should the dispatcher’s coercion facility care whether a function is a conversion or a
cast?

9. What is a “best match” in dispatching in older languages?

10. Why is dispatching more complex in modern languages?

11. “A subrange type can inherit functions from a base type.” Explain.

12. How does a class hierarchy provide broader support for subdomains? Be specific.

13. What is the difference between the handling of a C++ function definition placed inside a class
and outside it?

14. When is a derived module considered opaque? How is this accomplished?

15. Why is the compatibility of pointer types throughout the levels of a hierarchy essential?

16. What is a virtual class? Why is it necessary?

17. Why must dispatching of virtual classes be delayed until link or run time? How is this
accomplished in C++?

18. What are the benefits of virtual functions? The costs?

19. What is the dispatching rule for function inheritance in C++?

20. Why is the definition of a constructor function for a derived class more complicated than for
a base class?

21. What is a polymorphic type? Object? Function?

22. How was polymorphism implemented in older languages?

23. What are the differences between explicit domain testing and strong typing?

24. How do modern functional languages support generics?

25. How are types of objects deduced in Miranda? Explain.

26. In Miranda, what is a pattern? A constructor?

Index

abortive exit 317
abstract data type 446
abstract function 515
abstraction 126
abstraction 9
activation record 160
active block 160
ad hoc generic 513
ad hoc polymorphic domain 562
Ada derived type 457
Ada generic 532
additional binding 206
ADT 446
alias 52
allocation process 145
ambiguity 8
application 97
arity 363
array bounds 400
array dimension 400
ASCII 119
assertion, Prolog 377
assignment 148
atom, Prolog 375
automatic conversion 466
axioms 365
backtrack, Prolog 380
bad restriction 28
base type of a pointer 398
base type of a set 408
base type of an array 400
BCD 119
beta redex 100

beta reducible expression 100
binary operator 218
binding a name 180
binding at source time 530
binding time 431
birth of name 197
birth of object 158
bitwise operators 27
block exit time 207
block structure 195
block 195
block 8
BNF 82
bound variable 99
business computer 120
call-by-address 244
call-by-constant 247
call-by-name order 107
call-by-name 242
call-by-need 227
call-by-pointer 251
call-by-return 247
call-by-value-and-return 248
call/cc 322
call-with-current-continuation 322
captured reference 225
checkpoint 322
class member 500
clausal logic 366
closure 236
closure 260
coherent assignment 149
coherent representation 22

Index–1

Index–2 INDEX

coherent representation 23
combinatorial explosion 369
compiler bug 13
complete name 194
complete system 96
complete 368
comprehension 355
computation tree 218
computer representation 20
conclusion 366
concrete type 126
conditional expression 275
conditional sentence 366
conditional statement 275
conformant arrays 527
conservative conversion 465
constructor 423
contents of an object 144
context free languages 5
continuation 321
control diagram 274
control frame 279
control frame 289
control structure 268
counted loop 293
curry a function 103
currying 257
cut operation, for resolution 370
cut, Prolog 385
dangling reference 169
data hiding 506
data type 126
deallocation 158
death of an object 53
death of name 197
death of object 158
decidable 368
declaration 179
deduction 365
defaults 9
defining occurrence 195

demotion cast 462
demotion 465
denotational semantics 340
denotes 339
dereference 152
destructive assignment 148
dictionary 179
diffuse representation 22
dispatch a call 517
dispatch 42
dispatcher 517
dispatcher 543
distinguishable domains 448
domain checking 444
domain mapping 450
domain 436
dual type 480
dyadic operator 218
dynamic binding 180
dynamic binding 205
dynamic link 161
dynamic link 196
dynamic parent 161
dynamic scope 198
dynamic scoping 200
dynamic storage 159
EBCDIC 119
encapsulate 490
encoding conversion 465
encoding conversion 466
enumerated type 396
environment 179
error propagation 329
evaluation, inside-out 224
evaluation, outside-in 225
exception handler 331
exception 327
expansion of a non-terminal 82
explicit representation 22
expressive language 22
extension 107

INDEX Index–3

extension 12
extent of an object 158
external domain 448
external object 144
external scope 194
first class object 103
first class objects 52
first-order predicate calculus 362
fixed point number 121
fixed point 121
fixed point 340
flexible language 10
flexible language 28
formal language 80
free union 481
free variable 99
freelist 164
front end processor 277
function domain 57
function method 517
function range 58
functional composition 103
functional language 148
functional language 45
functional 561
functor 375
garbage collection 47
garbage collector 169
garbage 146
garbage 165
general loop 292
generate a program 85
generator 356
generic domain 127
generic domain 512
generic function 516
generic function 523
generic object 9
generic package 448
generic package 532
generic packages 431

global scope 194
goal 378
good restriction 28
guarded expression 349
heap allocation 162
heap storage 159
hidden data 492
higher-order function 103
higher-order function 254
Horn clause 372
hyperresolution 372
identifier 194
immortal object 158
implicit representation 22
independent domains 448
indeterminate result 230
index type 400
indirectly bound 245
infinite list 351
information-losing conversion 465
inherit 549
inheritance 42
inheritance 54
inherited function 556
inherited 549
initialization 146
in-line code 507
instance of a generic domain 127
instantiate a package 431
instantiate, in C++ 502
instantiate 168
instantiate 362
instantiated type 529
instantiation 9
internal domain 448
internally merged domains 448
invisible name 198
IROV 190
iteration element 298
labeled scope 64
lambda calculus formulas 97

Index–4 INDEX

lambda calculus variable 97
lambda evaluation 226
lambda expression body 97
lambda expression parameter 97
lambda expression 97
lambda function call syntax 217
lambda reduction rule 103
lambda substitution 225
language extension 12
lazy evaluation 227
lazy evaluation 227
lex 59
lexer generator 60
lexer 59
lexical analysis 59
lexical ancestor 160
lexical delimiter 59
lexical parent 160
lexical scoping 196
lexical token 59
lifetime of object 158
LISP atom 192
LISP lambda expression 32
list comprehension 356
list specification 376
list 192
local scope 194
logic language 47
logical consequence 368
logical operators 27
loop variable 293
makefile 492
masked definition 197
meaning of a name 176
meaning of a program 90
meaning of an object 148
meaning of code 5
meaning of expression 218
memory fragmentation 159
memory management 159
message 500

metalanguage 59
method 42
method 500
mode graph 542
mode 542
modularity 194
module 490
monadic operator 218
multiple assignment 151
multiply bound name 180
name binding 176
name conflict 225
name refers to 180
naming conflict 193
N -ary 363
necessary control structures 344
nested lifetimes 160
nonstandardized language 11
normal exit 317
normal form 100
normal form 102
normal form 99
normal function call-syntax 217
normal order 107
N -step proof 366
nuance 10
object 502
object-oriented language 193
object-oriented language 42
one-in/one-out 271
opaque derived mode 554
open list 376
operands 55
overloaded name 522
parallel arrays 25
parallel evaluation 349
parallel language 45
parameter mode 247
parameterized generic domain 512
parameterized domain 529
parameterized module 531

INDEX Index–5

parameterized type expression 527
parse tree 218
parse tree 81
parse tree 86
parser generator 80
parser 80
partial parameterization 260
p-code 90
pointer assignment 154
pointer variable 146
polymorphic object 561
polymorphic type 513
polymorphic type 561
portable code 90
portable program 39
postfix order 219
powerful language 28
predicate 363
prefix order 219
prefix syntax 218
premise 366
priming read 317
primitive control 268
primitive 437
private symbol 491
procedural language 42
process 339
program object 144
promises 544
promotion cast 462
promotion 465
proof system 365
proof 366
proposition 363
public symbol 491
pure functional language 341
pure value 144
qualifier list 356
rank of an array 400
recurrence equation 339
redex 100

reduction 100
reference constructor 425
reference conversion 466
reference 144
refutation 366
relatively global scope 194
representation of an object 20
represented by 450
resolution deduction 372
resolution proof 372
resolution 366
resolution 370
rule, Prolog 376
run-time dispatcher 543
run-time stack 160
satisfy 363
scientific computer 120
scope of a name 194
scope of quantifier 364
scope 64
scope-resolution operator 195
selection function 423
semantic basis 22
semantic basis 96
semantic intent 21
semantic intent 5
semantic rules 5
semantic validity 21
semiindependent domains 448
sentence 363
short circuit evaluation 228
simple object 128
size conversion 465
size conversion 465
size 128
slice of an array 403
spaghetti code 312
species of a generic domain 127
specific domain 512
specific type 126
specification 338

Index–6 INDEX

stack frame 160
static binding 180
static binding 181
static link 160
static link 196
static storage 158
storage compaction 136
storage object 144
stream 94
strict evaluation 227
strict evaluation 230
strict evaluation 350
strongly typed language 445
strongly typed language 445
structure of a program 90
structured editor 67
structured programming 271
subdomain 549
subroutine call 272
subroutine return 272
superdomain 549
symbol table 179
syntactic analysis 86
syntactic category 80
syntactic sugar 403
syntax 5
tail recursion 344
term 363
terminated string 406
theorem 366
theory 366
tripcount 297
tuple 351
type cast 460
type cast 460
type checking 444
type coercion 460
type coercion 466
type compatible 445
type constructor 453
type conversion 460

type conversion 465
type declaration 126
type description 126
type error 445
type match 445
type name 126
type of a type 394
type predicate 136
type predicate 431
type tag 455
type 137
type-object 394
unary operator 218
unbound name 180
unbound symbol 225
undefined name 180
undefined value 146
undefined value 295
unification 370
union types 419
unit record equipment 118
universe of discourse 362
unlabeled scope 64
Until test 291
upward compatibility 39
use of an identifier 195
use of parameter 234
valid representation 21
valid sentence 366
value constructor 425
value of an object 144
VAR parameter passing 244
variable declaration 51
variable 146
virtual class 554
virtual function 515
visibility 552
visible name 198
While test 291
word alignment 412
zero-based subscripting 400

INDEX Index–7

ZF expression 356

