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Contact Hypersurfaces Of A Bochner-
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Abstract: We have studied contact metric hypersurfaces of a Bochner-
Kaehler manifold and obtained the following two results: (1) A con-
tact metric constant mean curvature (CMC) hypersurface of a Bochner-
Kaehler manifold is a (k, µ)-contact manifold, and (2) If M is a compact
contact metric CMC hypersurface of a Bochner-Kaehler manifold with a
conformal vector field V that is neither tangential nor normal anywhere,
then it is totally umbilical and Sasakian, and under certain conditions
on V , is isometric to a unit sphere.

Keywords : Bochner-Kaehler manifold, Contact metric hypersurface, Con-
stant mean curvature, Conformal vector field.

MS Classification: 53B25, 53C55, 53 C15.

1 Introduction

Bochner curvature tensor was introduced in 1948 by S. Bochner [4] as
a Kaehlerian analogue of the Weyl conformal tensor. It was shown by
S.M. Webster [17] that the fourth order Chern-Moser curvature tensor
of CR-manifolds coincides with the Bochner tensor. A Kaehler manifold
with vanishing Bochner curvature tensor is known as Bochner-Kaehler
manifold. Bochner-Kaehler surface is nothing but a self-dual Kaehler
surface in Penrose’s twistor theory. Some topological obstructions to
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Bochner-Kaehler metrics were studied by Chen in [6]. Just as a real
space-form is conformally flat, a complex space-form is Bochner flat, i.e.
Bochner-Kaehler (the converse does not need to hold). The product of
two complex space-forms of constant holomorphic sectional curvatures
c and −c is non-Einstein Bochner-Kaehler. Though Bochner-Kaehler
manifolds have been studied by quite a few geometers, nevertheless have
received considerably less attention, compared to Kaehler metrics with
vanishing scalar curvature and Kaehler-Einstein metrics. For details we
refer to Bryant [5]. It is well known that a hypersurface M of a Kaehler
manifold M̄ admits an almost contact metric structure induced from the
Hermitian structure of M̄ . Okumura [13] studied and classified such
hypersurfaces, mainly when the ambient space is a complex space-form.
Generalizing the following result of Sharma [15] “The contact metric
hypersurface of a complex space-form is a (k, µ)-contact manifold”, we
prove the following main result of this paper.

Theorem 1 A contact metric constant mean curvature hypersurface of
a Bochner-Kaehler manifold is a (κ, µ)-contact manifold.

Finally, we consider the case when the ambient space admits a confor-
mal vector field and provide the following extrinsic characterization of a
Sasakian manifold.

Theorem 2 Let M be a compact contact metric constant mean curvature
hypersurface of a Bochner-Kaehler manifold M̄ admitting a conformal
vector field V which is neither tangential nor normal anywhere on M .
Then M is Sasakian and totally umbilical in M̄ , and the component U of
V , tangential to M is conformal on M . Further, (i) if U is non-Killing
and dim.M > 3, then M is isometric to the unit sphere S2n+1, and (ii)
if V is closed, then for any dimension, M is isometric to S2n+1.

2 Contact Metric Hypersurfaces Of A Kaehler

Manifold

A (2n+ 1)-dimensional smooth manifold M is said to be a contact man-
ifold if it carries a global 1-form η such that η∧ (dη)n 6= 0 everywhere on
M . Given a contact 1-form η, there exists a unique vector field ξ such
that (dη)(ξ,X)= 0 and η(ξ) = 1. Polarizing dη on the contact subbundle
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D (η = 0), one obtains a Riemannian metric g and a (1,1)-tensor field ϕ
such that

(dη)(X, Y ) = g(X,ϕY ), η(X) = g(X, ξ), ϕ2 = −I + η ⊗ ξ (1)

g is called an associated metric of η and (ϕ, η, ξ, g) a contact metric
structure. The operators h = 1

2
£ξϕ and l = R(., ξ)ξ are self-adjoint

and satisfy: hξ = 0 and hϕ = −ϕh. Furthermore, h, hϕ are trace-free.
Following formulas hold on a contact metric manifold.

∇Xξ = −ϕX − ϕhX (2)

l − ϕlϕ = −2(h2 + ϕ2) (3)

If the associated CR-structure on M is integrable, then M is called a
contact strongly pseudo-convex integrable CR manifold. This CR inte-
grability condition was shown by Tanno [16] to be equivalent to

(∇Xϕ)Y = g(X + hX, Y )ξ − η(Y )(X + hX) (4)

and holds on a 3-dimensional contact metric manifold. A contact metric
manifold (M, g) is said to be K-contact if ξ is Killing (equivalently, h =
0), and Sasakian if the almost Kaehler structure on the cone M × R
with metric dr2 + r2g is Kaehler. Sasakian manifolds are K-contact and
3-dimensional K-contact manifolds are Sasakian. For details we refer
to Blair [1]. In [2] Blair, Koufogiorgos and Papantoniou introduced a
class of contact metric manifolds M2n+1(η, ξ, g, ϕ) satisfying the nullity
condition:

R(X, Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ) (5)

for real constants k and µ. Such manifolds are known as (k, µ)-contact
manifolds, and satisfy: k ≤ 1, equality holding when M is Sasakian.
Let M be an isometrically embedded orientable hypersurface of a Kaehler
manifold M̄ of real dimension 2n+ 2 and with complex structure tensor
J : J2 = −I and the Hermitian metric g. The induced metric on M will
also be denoted by g. If N denotes the unit normal vector field to M ,
we set

JN = ξ (6)

JX = ϕX − η(X)N, (7)
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where ϕ and η denote a (1, 1)-tensor field and a 1-form respectively, and
X an arbitrary vector field tangent to M . The Gauss and Weingarten
formulas are

∇̄XY = ∇XY + g(AX, Y )N, ∇̄XN = −AX

where X, Y denote arbitrary vector fields tangent to M , ∇ and ∇̄ the
Riemannian connections of M and M̄ respectively, and A the Weingarten
operator. Differentiating (1) along an arbitrary vector field X tangent to
M , using the Weingarten formula, and comparing tangential parts gives

∇Xξ = −ϕAX. (8)

One can easily verify using (6) and (7) that (ϕ, ξ, η, g) defines the almost
contact metric structure. We now assume that the almost contact metric
structure induced on M is a contact metric structure. Using the formula
(2) in (8) yields

Aξ = (Tr.A− 2n)ξ. (9)

AX = X + hX + (Tr.A− 2n− 1)η(X)ξ. (10)

which were derived in [15]. Next, differentiating (7) along M , and using
(10) gives equation (4). Hence M is contact strongly pseudo-convex
integrable CR manifold. We denote the Ricci tensor of M , of types (0, 2)
and (1, 1) by S and Q respectively, and the scalar curvature by r of
M . Corresponding objects of M̄ are denoted by the same letters with
overbars. Recall the Gauss equation

g(R̄(X, Y )Z,W ) = g(R(X, Y )Z,W )

+g(AX,Z)g(AY,W )− g(AY,Z)g(AX,W ). (11)

and contract it as

S̄(Y, Z)− g(R̄(N, Y )Z,N) = S(Y, Z)

+g(AX,AZ)− (Tr.A)g(AY,Z). (12)
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For a Bochner-Kaehler manifold M̄ , the Bochner curvature tensor B (see
[19]) vanishes, i.e. for arbitrarty vector fields X̄, Ȳ , Z̄, W̄ on M̄ , we have

0 = g(B(X̄, Ȳ )Z̄, W̄ ) = g(R̄(X̄, Ȳ )Z̄, W̄ )− 1

2n+ 6
[g(Ȳ , Z̄)g(Q̄X̄, W̄ )

− g(Q̄X̄, Z̄)g(Ȳ , W̄ ) + g( ¯JY , Z̄)g(Q̄JX̄, W̄ )− g(Q̄JX̄, Z̄)g(JȲ , W̄ )

+ g(Q̄Ȳ , Z̄)g(X̄, W̄ )− g(X̄, Z̄)g(Q̄Ȳ , W̄ ) + g(Q̄JȲ , Z̄)g(JX̄, W̄ )

− g(JX̄, Z̄)g(Q̄JȲ , W̄ )− 2g(JX̄, Q̄Ȳ )g(JZ̄, W̄ )

− 2g(JX̄, Ȳ )g(Q̄JZ̄, W̄ ) +
r̄

(2n+ 4)(2n+ 6)
[g(Ȳ , Z̄)g(X̄, W̄ )

− g(X̄, Z̄)g(Ȳ , W̄ ) + g( ¯JY , Z̄)g(JX̄, W̄ )

− g(JX̄, Z̄)g(JȲ , W̄ )− 2g(JX̄, Ȳ )g(JZ̄, W̄ )] (13)

3 Proofs Of The Results

Lemma 1 For a contact metric hypersurface of a Kaehler manifold,

(a)S̄(ϕY, Z) + S̄(Y, ϕZ) = η(Y )g(Q̄N, Z) + η(Z)g(Q̄N, Y )

(b)g(ξ, Q̄N) = 0.

Proof: Since M is Kaehler, we have S̄(JY, Z) + S̄(Y, JZ) = 0. The use
of (7) in this gives (a). Substituting ξ for Y and Z in (a) yields (b).

Lemma 2 If f is a smooth function on a contact metric manifold M
such that df = (ξf)η (d denoting exterior derivation), then f is constant
on M .

Proof: Taking the exterior derivative of the differential condition men-
tioned in the hypothesis gives d(ξf) ∧ η + (ξf)dη = 0. Taking its wedge
product with η we find (ξf)(dη)∧η = 0. As (dη)∧η is nowhere vanishing
on M (otherwise the definition of contact structure would break down),
we conclude that ξf = 0 on M . Consequently, df = 0 on M , and hence
f is constant on M , completing the proof.

Lemma 3 For a contact metric hypersurface M of a Bochner-Kaehler
manifold, the following conditions are equivalent:
(a) For any vector field X tangent to M , g(Q̄N,X) = 0
(b) ξ is an eigenvector of the Ricci operator Q at each point of M
(c) The mean curvature of M is constant.
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Proof : Using equations (12), (13), and part (b) of Lemma 1 gives

(2n+ 5)S̄(Y, Z) = [S̄(N,N)− r̄

2n+ 4
]g(Y, Z)− 3r̄

2n+ 4
η(Y )η(Z)

+ 3g(Q̄Z, ξ)η(Y ) + 3g(Q̄Y, ξ)η(Z) + (2n+ 6)[S(Y, Z)

+ g(AY,AZ)− (Tr.A)g(AY,Z)]

Now we replace Y by ϕY in the above equation to get one equation, and
replace Z by ϕZ to get another equation. Adding these two equations,
and using part (a) of Lemma 1 we obtain

(2n+ 5){η(Y )g(Q̄N, Z) + η(Z)g(Q̄N, Y )} = 3g(Q̄ϕZ, ξ)η(Y )

+3g(Q̄ϕY, ξ)η(Z) + (2n+ 6)[S(ϕY, Z) + S(Y, ϕZ) + g(AϕY,AZ)

+g(AY,AϕZ)− (Tr.A)g(AϕY,Z)− (Tr.A)g(AY, ϕZ). (14)

Substituting ξ for Z, using (9) and part (b) of Lemma 1 yields

(n+ 1)ϕQ̄ξ = (n+ 3)ϕQξ. (15)

We also note

g(Q̄N,X) = −g(JQ̄ξ,X) = −g(ϕQ̄ξ,X), (16)

The equations (15) and (16) show that (a) is equivalent to (b). Con-
tracting the Codazzi equation: R̄(X, Y )N = (∇YA)X − (∇XA)Y at X
provides S̄(Y,N) = Y (Tr.A) − (divA)Y . Equation (10) transforms the
preceding equation into

S̄(Y,N) = Y (Tr.A)− (ξTr.A)η(Y )− (divh)Y (17)

Using equation (4) and the formula (div.h)ξ = 0 (easy to verify) for a
contact metric shows

(divhϕ)ϕY = −(divh)Y (18)

Let us assume (b), i.e. Qξ = (Tr.l)ξ. Applying the formula: (divhϕ)Y =
S(Y, ξ) − 2nη(Y ) (see [3]), we have (divhϕ)ϕY = S(ϕY, ξ) = 0. Hence
equation (18) shows that divh = 0. As Qξ = (Tr.l)ξ is equivalent to
(a) [proven earlier], appealing to equation (17) we obtain d(Tr.A) =
(ξTr.A)η. Application of Lemma 2 shows that Tr.A is constant on
M , proving (b) ⇒ (c). For the converse, assume (c), i.e. Tr.A con-
stant. Then, we go back to equations (17) and (18) and use the formula
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(divhϕ)Y = S(Y, ξ)−2nη(Y ) once again, getting S̄(X,N) = S(ϕX, ξ) =
−g(ϕQξ,X). Using this in (16) we find ϕQ̄ξ = ϕQξ. Finally, using this
in (15) we conclude that ϕQξ = 0 which implies (b), and complete the
proof.

Lemma 4 For a contact metric hypersurface M of a Bochner-Kaehler
manifold M̄ ,

(a)(Qϕ− ϕQ)− (η ◦Qϕ)⊗ ξ + η ⊗ ϕQξ = 2(Tr.A− 2)hϕ.

(b)lϕ− ϕl = 2(Tr.A− 2n)hϕ.

Proof Replacing Y, Z by ϕY, ϕZ respectively, in (14) and then using
(10) we get (a). Using the formula:

Qϕ− ϕQ = lϕ− ϕl + 4(n− 1)hϕ+ (η ◦Qϕ)⊗ ξ − η ⊗ ϕQξ = 0,

for a contact pseudo-convex integrable CR-manifold (see [10]), and using
it in (a) we obtain (b).

Proof Of Theorem 1. First, we use equation (13) to obtain

g(R̄(X, Y )ξ,W ) =
1

2n+ 6
[η(Y )g(Q̄X,W )− g(Q̄X, ξ)g(Y,W )

−g(Q̄X,N)g(JY,W ) + g(Q̄Y, ξ)g(X,W )− η(X)g(Q̄Y,W )

+g(Q̄Y,N)g(JY,W )− 2g(JX, Y )g(Q̄ξ,W )]

− r̄

(2n+ 6)(2n+ 4)
[η(Y )g(X,W )− η(X)g(Y,W )] (19)

for arbitrary vector fields X, Y,W tangent to M . By Lemma 3, the
constant mean curvature hypothesis is equivalent to g(Q̄N,X) = 0, i.e.
Q̄N = fN for some function f on M . We also have Q̄ξ = JQ̄N = fξ.
Hence equation (19) reduces to

(2n+ 6)g(R̄(X, Y )ξ,W ) = η(Y )g(Q̄X,W )− η(X)g(Q̄Y,W )

+ σ[η(Y )g(X,W )− η(X)g(Y,W )] (20)

where σ = f− r̄
2n+4

. This shows that g(R(X, Y )ξ,W ) = 0, for any vector
fields X, Y tangent to M and orthogonal to ξ. Next, substituting ξ for
Z in (11), and using equations (9) and (20) we obtain R(X, Y )ξ = 0,
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for any vector fields X, Y tangent to M and orthogonal to ξ. Hence
by the result of Koufogiorgos-Stamatiou ([11]) we conclude that M is a
(κ, µ)-space provided the dimension of M is ≥ 5.
It remains to consider the 3-dimensional case for which we know that

R(X, Y )Z = g(QY,Z)X − g(QX,Z)Y + g(Y, Z)QX

− g(X,Z)QY − r

2
{g(Y, Z)X − g(X,Z)Y } (21)

Making use of the formula (3) and the formula h2 = (k − 1)ϕ2 ( for any
3-dimensional contact metric manifold [9], where k is a function = Tr.l

2
)

in part (b) of Lemma 4, we obtain

lY = −kϕ2Y + (Tr.A− 2)hY (22)

Differentiating this along an arbitrary vector field X, using (2) and then
contracting the resulting equation at X with respect to a local orthonor-
mal frame ei, we find

g((∇YQ)ξ, ξ)− g((∇ξQ)Y, ξ)− g(R(Y, ϕei + ϕhei)ξ, ei)

−g(R(Y, ξ)(ϕei + ϕhei), ei) = −(ϕ2Y )κ+ (Tr.A− 2)(divh)Y (23)

UsingQξ = (Tr.l)ξ and (2) we have g((∇YQ)ξ, ξ) = 2(Y k), g((∇ξQ)Y, ξ) =
2(ξk)η(Y ). We also had found during the proof of Lemma 3 that div.h =
0. Moreover, using (21) and Qξ = (Tr.l)ξ we compute

g(R(Y, ϕei + ϕhei)ξ, ei) = −η(Y )Tr.(Qϕh)

and
g(R(Y, ξ)(ϕei + ϕhei), ei) = 0

Utilizing all these findings in (23), we obtain

Y k − (ξk)η(Y ) + η(Y )Tr.(Qϕh) = 0

Taking Y = ξ it is easy to see that Tr.Qϕh = 0. Hence Y k = (ξk)η(Y ),
i.e. dk = (ξk)η. Applying Lemma 2, we conclude that k is constant.
Thus, the hypothesis : Qξ = (Tr.l)ξ and (21) imply R(X, Y )ξ = 0, for
any vector field X, Y orthogonal to ξ. Replacing X by X − η(X)ξ and
Y by Y − η(Y )ξ (as these vector fields are orthogonal to ξ) we obtain

R(X, Y )ξ = η(Y )lX − η(X)lY
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The use of (22) in the foregoing equation shows that M3 is a (κ, µ) space
with µ = (Tr.A− 2). This completes the proof.

Proof Of Theorem 2. As V is conformal on M̄ ,

£V g = 2ρg (24)

We decompose the conformal vector field V along M orthogonally as

V = U + αN (25)

where U is the tangential part of V and α a smooth function on M . In
view of the Lemma 3, the constant mean curvature hypothesis is equiva-
lent to S̄(X,N) = 0 for arbitrary vector field X tangent to M . Following
the procedure given on pages 101-104 of Yano [18], we have

2n

∫
M

S̄(U,N)dM =

∫
M

α
2n+1∑
i 6=j

(ki − kj)2dM (26)

where dM is the volume element of M , and ki are the principal curva-
tures of M . As the left hand side of the above equation is zero, and α
is nowhere zero on M (otherwise V would become tangent to M some-
where, contradicting our hypothesis), we conclude that ki = kj, i.e. M
is totally umbilical. Hence, using (10) provides A = I, and h = 0, i.e.
M is Sasakian. The conformal Killing equation (24), together with the
Gauss and Weingarten formulas show that £Ug = 2(ρ + α)g, i.e. U is
conformal on M . If U is homothetic, then U reduces to Killing, since M
is compact. Hence, if U is not Killing, and dim > 3, then by the following
theorem of Okumura [14] “A complete Sasakian manifold of dimension
> 3 and admitting a non-Killing conformal vector field is isometric to a
unit sphere”, M is isometric to S2n+1 which proves (i). For (ii), we know
from the following result of Goldberg [8]“A closed conformal vector field
on a non-flat Kaehler manifold is homothetic and holomorphic” that V
is homothetic. Hence ∇XV = ρX (ρ constant). Using the decomposition
(25), and bearing in mind that X is arbitrary tangent vector on M , we
immediately obtain U = −Dα (D is the gradient operator of (M, g)) and
∇XU = (α + ρ)X. We note that α cannot be constant on M , otherwise
U would vanish on M turning V normal to M and thus contradicting
our hypothesis. Thus obtain

∇XD(α + ρ) = −(α + ρ)X (27)
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Hence, by Obata’s theorem [12]“A complete Riemannian manifold of di-
mension > 2 is isometric to a sphere of radius 1

c
if and only if it admits

a non-trivial solution f of the differential equation ∇∇f = −c2fg”, we
conclude that M is isometric to S2n+1, completing the proof.

Remark. As indicated in [7], the Kaehler cone manifold (M×R+, d(r2η)
with metric dr ⊗ dr + r2g over a Sasakian manifold (M, η, g) admits a
conformal vector field ar∂r− bξ (for a, b real constants) which is nowhere
tangent and nowhere normal to M and therefore serves as an example of
the conformal vector field satisfying the hypothesis of Theorem 2.

4 Acknowledgment:

R.S. was supported by the University Of New Haven Research Scholar-
ship.

References

[1] Blair, D.E., Riemannian geometry of contact and symplectic mani-
folds, Birkhauser, Boston, 2010.

[2] Blair, D.E., Koufogiorgos, T. and Papantoniou, B. J., Contact met-
ric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995),
189-214.

[3] Blair, D.E. and Sharma, R., Generalization of Myers’ theorem on a
contact manifold, Illinois J. Math. 34 (1990), 385-390.

[4] Bochner, S., Curvature and Betti numbers, II, Annals of Math. 50
(1949), 77-93.

[5] Bryant, R.L., Bochner-Kaehler metrics, Jour. Amer. Math. Soc. 14
(2001), 623-715.

[6] Chen, B.Y., Some topological obstructions to Bochner-Kaehler met-
rics and their applications, J. Diff. Geom. 13 (1978), 547-558.

[7] Ghosh, A. and Sharma, R., Almost Hermitian manifolds admitting
holomorphically planar conformal vector fields, J. Geom. 84 (2005),
45-54.

10



[8] Goldberg, S.I., Curvature and Homology, Academic Press, N.Y.,
1962.

[9] Koufogiorgos, T., On a class of contact Riemannian 3-manifolds,
Results in Math. 27 (1995), 51-62.

[10] Koufogiorgos, T., Contact strongly pseudo-convex integrable CR
metrics as critical points, J. Geom. 59 (1997), 94-102.

[11] Koufogiorgos, T., and Stamatiou, G., Strongly locally ϕ-symmetric
contact metric manifolds, Beitr. Algebra Geom. 52 (2011), 221-236.

[12] Obata, M., Certain conditions for a Riemannian manifold to be
isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333-340.

[13] Okumura, M., Contact hypersurfaces in certain Kaehlerian mani-
folds, Tohoku Math. J. 18 (1966), 74-102.

[14] Okumura, M., On infinitesimal conformal and projective transfor-
mations of normal contact spaces, Tohoku Math. J. 14 (1962), 398-
412.

[15] Sharma, R., Contact hypersurfaces of Kaehler manifolds, J. Geom.
78 (2003), 157-167.

[16] Tanno, S., Variational problems on contact Riemannian manifolds,
Trans. Amer. Math. Soc. 314(1989), 349-379.

[17] Webster, S.M., On the pseudo-conformal geometry of a Kaehler
manifold, Math. Z. 157 (1977), 265-270.

[18] Yano, K., Integral formulas in Riemannian geometry, Marcel
Dekker, New York, 1970.

[19] Yano, K. and Kon, M., Structures on Manifolds, Series in Pure
Mathematics 3, World Scientific Pub. Co., Singapore, 1984.

11


	Contact Hypersurfaces of a Bochner-Kaehler Manifold
	Publisher Citation
	Comments


	tmp.1418838108.pdf.iyLC0

