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Contact Hypersurfaces Of A Bochner-
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Abstract: We have studied contact metric hypersurfaces of a Bochner-
Kaehler manifold and obtained the following two results: (1) A con-
tact metric constant mean curvature (C'MC') hypersurface of a Bochner-
Kaehler manifold is a (k, pt)-contact manifold, and (2) If M is a compact
contact metric C'M C hypersurface of a Bochner-Kaehler manifold with a
conformal vector field V' that is neither tangential nor normal anywhere,
then it is totally umbilical and Sasakian, and under certain conditions
on V, is isometric to a unit sphere.

Keywords: Bochner-Kaehler manifold, Contact metric hypersurface, Con-
stant mean curvature, Conformal vector field.

MS Classification: 53B25, 53C55, 53 C15.

1 Introduction

Bochner curvature tensor was introduced in 1948 by S. Bochner [4] as
a Kaehlerian analogue of the Weyl conformal tensor. It was shown by
S.M. Webster [17] that the fourth order Chern-Moser curvature tensor
of C'R-manifolds coincides with the Bochner tensor. A Kaehler manifold
with vanishing Bochner curvature tensor is known as Bochner-Kaehler
manifold. Bochner-Kaehler surface is nothing but a self-dual Kaehler
surface in Penrose’s twistor theory. Some topological obstructions to
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Bochner-Kaehler metrics were studied by Chen in [6]. Just as a real
space-form is conformally flat, a complex space-form is Bochner flat, i.e.
Bochner-Kaehler (the converse does not need to hold). The product of
two complex space-forms of constant holomorphic sectional curvatures
¢ and —c is non-Einstein Bochner-Kaehler. Though Bochner-Kaehler
manifolds have been studied by quite a few geometers, nevertheless have
received considerably less attention, compared to Kaehler metrics with
vanishing scalar curvature and Kaehler-Einstein metrics. For details we
refer to Bryant [5]. It is well known that a hypersurface M of a Kaehler
manifold M admits an almost contact metric structure induced from the
Hermitian structure of M. Okumura [13] studied and classified such
hypersurfaces, mainly when the ambient space is a complex space-form.
Generalizing the following result of Sharma [15] “The contact metric
hypersurface of a complex space-form is a (k, u)-contact manifold”, we
prove the following main result of this paper.

Theorem 1 A contact metric constant mean curvature hypersurface of
a Bochner-Kaehler manifold is a (k, p)-contact manifold.

Finally, we consider the case when the ambient space admits a confor-
mal vector field and provide the following extrinsic characterization of a
Sasakian manifold.

Theorem 2 Let M be a compact contact metric constant mean curvature
hypersurface of a Bochner-Kaehler manifold M admitting a conformal
vector field V' which is neither tangential nor normal anywhere on M.
Then M is Sasakian and totally umbilical in M, and the component U of
V', tangential to M is conformal on M. Further, (i) if U is non-Killing
and dim.M > 3, then M is isometric to the unit sphere S**1 and (i)
if V' is closed, then for any dimension, M is isometric to S***1.

2 Contact Metric Hypersurfaces Of A Kaehler
Manifold

A (2n 4+ 1)-dimensional smooth manifold M is said to be a contact man-
ifold if it carries a global 1-form 1 such that n A (dn)™ # 0 everywhere on
M. Given a contact 1-form 7, there exists a unique vector field £ such
that (dn)(§, X)= 0 and (&) = 1. Polarizing dn on the contact subbundle
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D (n =0), one obtains a Riemannian metric g and a (1,1)-tensor field ¢
such that

(dn)(X,Y) =g(X, oY) n(X) =g(X,8),¢*=—T+n®¢ (1)

g is called an associated metric of n and (p,n,&,g) a contact metric
structure. The operators h = %,,5590 and [ = R(.,£)¢ are self-adjoint
and satisfy: h{ = 0 and heo = —ph. Furthermore, h, hy are trace-free.
Following formulas hold on a contact metric manifold.

Vx{=—pX — phX (2)

= plp = =2(h* + ¢°) (3)
If the associated CR-structure on M is integrable, then M is called a

contact strongly pseudo-convex integrable CR manifold. This CR inte-
grability condition was shown by Tanno [16] to be equivalent to

(Vx@)Y = g(X +hX,Y)E —n(Y)(X + hX) (4)

and holds on a 3-dimensional contact metric manifold. A contact metric
manifold (M, g) is said to be K-contact if £ is Killing (equivalently, h =
0), and Sasakian if the almost Kaehler structure on the cone M x R
with metric dr? + r?g is Kaehler. Sasakian manifolds are K-contact and
3-dimensional K-contact manifolds are Sasakian. For details we refer
to Blair [1]. In [2] Blair, Koufogiorgos and Papantoniou introduced a
class of contact metric manifolds M?""1(n, &, g, ¢) satisfying the nullity
condition:

R(X,Y)E = k(n(Y)X —n(X)Y) + p(n(Y)hX —n(X)hY)  (5)

for real constants k£ and p. Such manifolds are known as (k, pu)-contact
manifolds, and satisfy: k& < 1, equality holding when M is Sasakian.
Let M be an isometrically embedded orientable hypersurface of a Kaehler
manifold M of real dimension 2n 4 2 and with complex structure tensor
J : J* = —I and the Hermitian metric g. The induced metric on M will
also be denoted by g. If N denotes the unit normal vector field to M,
we set

JN =¢ (6)

JX =X —n(X)N, (7)



where ¢ and 1 denote a (1, 1)-tensor field and a 1-form respectively, and
X an arbitrary vector field tangent to M. The Gauss and Weingarten
formulas are

VxY =VxY +g(AX,Y)N, VxN = —-AX

where X,Y denote arbitrary vector fields tangent to M, V and V the
Riemannian connections of M and M respectively, and A the Weingarten
operator. Differentiating (1) along an arbitrary vector field X tangent to
M, using the Weingarten formula, and comparing tangential parts gives

Vx&=—pAX. (8)

One can easily verify using (6) and (7) that (¢, &, n, g) defines the almost
contact metric structure. We now assume that the almost contact metric
structure induced on M is a contact metric structure. Using the formula

(2) in (8) yields

A& = (Tr.A—2n)é. 9)

AX = X + hX + (Tr.A —2n — Dn(X)E. (10)

which were derived in [15]. Next, differentiating (7) along M, and using
(10) gives equation (4). Hence M is contact strongly pseudo-convex
integrable CR manifold. We denote the Ricci tensor of M, of types (0, 2)
and (1,1) by S and @ respectively, and the scalar curvature by r of
M. Corresponding objects of M are denoted by the same letters with
overbars. Recall the Gauss equation

g(R(X,Y)Z,W) = g(R(X,Y)Z, W)

and contract it as

S(Y,Z) — g(R(N,Y)Z,N) = S(Y, Z)
+9(AX, AZ) — (Tr.A)g(AY, Z). (12)



For a Bochner-Kaehler manifold M, the Bochner curvature tensor B (see
[19]) vanishes, i.e. for arbitrarty vector fields X,Y, Z, W on M, we have

0 = g(BOX,V)Z,W) = g(R(X.V)Z,W) = ———|g(V, 2)g(QX, V)
— 9(QX, Z)g(Y W) +g(JY, 2)g(QIX W) — g(QJX, Z)g(JY W)
+ 9(QY, 2)g(X. W) — g(X, Z)g(QY W) + g(QJY , Z)g(JX, W)
— 9(JX, 2)9(QJY W) = 29(JX,QY)g(JZ, W)
- ZQ(JX’Y)Q( JZ7W)+ (2n+4)(2n—|—6) [g(Y7Z)g(X7W)
- g( _’ _)g(Y’ V_V) +g(J_}/7Z)g(JX7W)
— g(JX, 2)g(JY W) —29(JX,Y)g(JZ,W)] (13)

3 Proofs Of The Results

Lemma 1 For a contact metric hypersurface of a Kaehler manifold,

(a)S(eY, Z) + S(Y,0Z) =n(Y)g(QN, Z) + n(Z)g(QN,Y’)

(b)g(§, QN) = 0.

Proof: Since M is Kaehler, we have S(JY, Z) + S(Y,JZ) = 0. The use
of (7) in this gives (a). Substituting ¢ for Y and Z in (a) yields (b).

Lemma 2 If f is a smooth function on a contact metric manifold M
such that df = (£f)n (d denoting exterior derivation), then f is constant
on M.

Proof: Taking the exterior derivative of the differential condition men-
tioned in the hypothesis gives d({f) An+ (£f)dn = 0. Taking its wedge
product with  we find (£ f)(dn) An = 0. As (dn) An is nowhere vanishing
on M (otherwise the definition of contact structure would break down),
we conclude that £f = 0 on M. Consequently, df =0 on M, and hence
f is constant on M, completing the proof.

Lemma 3 For a contact metric hypersurface M of a Bochner-Kaehler
manifold, the following conditions are equivalent:

(a) For any vector field X tangent to M, g(QN,X) =0

(b) & is an eigenvector of the Ricci operator Q) at each point of M

(c) The mean curvature of M is constant.
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Proof : Using equations (12), (13), and part (b) of Lemma 1 gives

En+5)8(Y,2) = [S(N.N) = s —Jo(¥,2) = =¥ )n(2)
+ 39(QZ,)n(Y) + 39(QY,)n(Z) + (2n+ 6)[S(Y, Z)

+ g(AY,AZ) — (Tr.A

~—

g(AY, Z)]

Now we replace Y by ¢Y in the above equation to get one equation, and
replace Z by ¢Z to get another equation. Adding these two equations,
and using part (a) of Lemma 1 we obtain

(2n +5){n(Y)g(QN, 2) +1(Z)9(QN,Y)} = 39(QpZ, n(Y)

+39(QeY, n(Z) + (2n + 6)[S(pY, Z) + S(Y, pZ) + g(ApY, AZ)
+g(AY, ApZ) — (Tr.A)g(ApY, Z) — (Tr.A)g(AY, o Z). (14)

Substituting £ for Z, using (9) and part (b) of Lemma 1 yields

(n+1)pQE& = (n+ 3)pQE. (15)

We also note

9(QN. X) = —g(JQE, X) = —g(pQ€, X), (16)

The equations (15) and (16) show that (a) is equivalent to (b). Con-
tracting the Codazzi equation: R(X,Y)N = (VyA)X — (VxA)Y at X
provides S(Y, N) = Y (Tr.A) — (divA)Y. Equation (10) transforms the
preceding equation into

S(Y,N) = Y(Tr.A) — (€Tr.A)n(Y) — (divh)Y (17)

Using equation (4) and the formula (div.h)é = 0 (easy to verify) for a
contact metric shows

(divhe)pY = —(divh)Y (18)

Let us assume (b), i.e. Q¢ = (Tr.0)¢. Applying the formula: (divhe)Y =
S(Y, &) —2nn(Y) (see [3]), we have (divhp)pY = S(pY,&) = 0. Hence
equation (18) shows that divh = 0. As Q¢ = (T'r.l)¢ is equivalent to
(a) [proven earlier|, appealing to equation (17) we obtain d(Tr.A) =
(&Tr.A)n.  Application of Lemma 2 shows that Tr.A is constant on
M, proving (b) = (c). For the converse, assume (c), i.e. T7r.A con-
stant. Then, we go back to equations (17) and (18) and use the formula
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(divhp)Y = S(Y, &) —2nn(Y') once again, getting S(X,N) = S(pX,¢) =
—g(pQ¢&, X). Using this in (16) we find pQ¢& = pQ¢. Finally, using this
in (15) we conclude that Q& = 0 which implies (b), and complete the
proof.

Lemma 4 For a contact metric hypersurface M of a Bochner-Kaehler
manifold M,

(a)(Qp — Q) — (NoQp) @& +n®eQE = 2(Tr.A —2)he.

(D)l — ol = 2(Tr.A — 2n)he.

Proof Replacing Y, Z by Y, ¢pZ respectively, in (14) and then using
(10) we get (a). Using the formula:

Qe —pQ =1lp—pl+4(n—1hp+ (noQp) @& —n® QL =0,

for a contact pseudo-convex integrable CR-manifold (see [10]), and using
it in (a) we obtain (b).

Proof Of Theorem 1. First, we use equation (13) to obtain

9(R(X,Y)EW) = o 6[77(Y)9(QX, W) = g(QX,&)g(Y, W)

—9(QX, N)g(JY, W) + g(QY,£)g(X, W) — n(X)g(QY, W)
+9(QY, N)g(JY, W) = 29(JX,Y)g(QE, W)]

~E T e @ T W) —nX)g(V, W) (19)

for arbitrary vector fields X,Y,W tangent to M. By Lemma 3, the
constant mean curvature hypothesis is equivalent to g(QN, X) = 0, i.e.
QN = fN for some function f on M. We also have Q¢ = JQN = f&.

Hence equation (19) reduces to

2n+6)g(R(X,Y)E,W) = n(Y)g(QX, W) —n(X)g(QY, W)
+ on(Y)g(X, W) —n(X)g(Y,W)] (20)

where o = f — 5.2, This shows that g(R(X,Y)E, W) = 0, for any vector
fields X, Y tangent to M and orthogonal to £. Next, substituting & for
Z in (11), and using equations (9) and (20) we obtain R(X,Y)¢ = 0,
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for any vector fields X, Y tangent to M and orthogonal to £. Hence
by the result of Koufogiorgos-Stamatiou ([11]) we conclude that M is a
(K, pu)-space provided the dimension of M is > 5.

It remains to consider the 3-dimensional case for which we know that

R(X,Y)Z = g(QY, 2)X —g(QX,2)Y +g(Y, 2)QX
r
- 9(X,2)QY - ;{g(Y. 2)X —g(X, 2)Y}  (21)
Making use of the formula (3) and the formula h? = (k — 1)? ( for any

3-dimensional contact metric manifold [9], where k is a function = )
in part (b) of Lemma 4, we obtain

IY = —kp*Y + (Tr.A — 2)hY (22)

Differentiating this along an arbitrary vector field X, using (2) and then
contracting the resulting equation at X with respect to a local orthonor-
mal frame e;, we find

9(VyQ)§,€) — g((VeQ)Y, &) — g(R(Y, we; + phe;), €;)
—g(R(Y,&)(pe: + phei), e) = —=(0*Y)k + (Tr.A = 2)(divh)Y  (23)

Using Q¢ = (T'r.1)§ and (2) we have g((VyQ)¢, &) = 2(Yk), 9((VeQ)Y, §) =
2(&k)n(Y"). We also had found during the proof of Lemma 3 that div.h =

0. Moreover, using (21) and Q& = (T'r.l){ we compute

g(R(Y, pe; + phe;)€, ei) = —n(Y)Tr.(Qph)

and
g(R(Y, &) (pe; + phe;), e;) =0
Utilizing all these findings in (23), we obtain

Yk = (Ek)n(Y) +n(Y)Tr.(Qph) = 0

Taking Y = £ it is easy to see that Tr.Qph = 0. Hence Yk = (k)n(Y),
ie. dk = (£k)n. Applying Lemma 2, we conclude that k is constant.
Thus, the hypothesis : Q¢ = (T'r.0)¢ and (21) imply R(X,Y)¢ = 0, for
any vector field X, Y orthogonal to . Replacing X by X — n(X)¢{ and
Y by Y —n(Y)¢ (as these vector fields are orthogonal to &) we obtain

R(X,Y) = n(Y)IX — n(X)IY

8



The use of (22) in the foregoing equation shows that M? is a (k, i) space
with g = (Tr.A — 2). This completes the proof.

Proof Of Theorem 2. As V is conformal on M,
Lyvg =2pg (24)
We decompose the conformal vector field V' along M orthogonally as
V=U+aN (25)

where U is the tangential part of V and a a smooth function on M. In
view of the Lemma 3, the constant mean curvature hypothesis is equiva-
lent to S(X, N) = 0 for arbitrary vector field X tangent to M. Following
the procedure given on pages 101-104 of Yano [18], we have

2n+1
n / S(U,N)dM = / a (ki —kj)*dM (26)
M Mo i

where dM is the volume element of M, and k; are the principal curva-
tures of M. As the left hand side of the above equation is zero, and «
is nowhere zero on M (otherwise V' would become tangent to M some-
where, contradicting our hypothesis), we conclude that k; = k;, i.e. M
is totally umbilical. Hence, using (10) provides A = I, and h = 0, i.e.
M is Sasakian. The conformal Killing equation (24), together with the
Gauss and Weingarten formulas show that £yg = 2(p + a)g, i.e. U is
conformal on M. If U is homothetic, then U reduces to Killing, since M
is compact. Hence, if U is not Killing, and dim > 3, then by the following
theorem of Okumura [14] “A complete Sasakian manifold of dimension
> 3 and admitting a non-Killing conformal vector field is isometric to a
unit sphere”, M is isometric to S?"*! which proves (i). For (ii), we know
from the following result of Goldberg [8]“A closed conformal vector field
on a non-flat Kaehler manifold is homothetic and holomorphic” that V'
is homothetic. Hence VxV = pX (p constant). Using the decomposition
(25), and bearing in mind that X is arbitrary tangent vector on M, we
immediately obtain U = —Da (D is the gradient operator of (M, ¢g)) and
VxU = (a+ p)X. We note that o cannot be constant on M, otherwise
U would vanish on M turning V normal to M and thus contradicting
our hypothesis. Thus obtain

VxD(a+p)=—(a+p)X (27)
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Hence, by Obata’s theorem [12]“A complete Riemannian manifold of di-
mension > 2 is isometric to a sphere of radius % if and only if it admits
a non-trivial solution f of the differential equation VV f = —c2fg”, we
conclude that M is isometric to S?"*!, completing the proof.

Remark. Asindicated in [7], the Kaehler cone manifold (M x R*, d(r*n)
with metric dr @ dr + r%g over a Sasakian manifold (M, 7, g) admits a
conformal vector field ard, — b¢ (for a, b real constants) which is nowhere
tangent and nowhere normal to M and therefore serves as an example of
the conformal vector field satisfying the hypothesis of Theorem 2.
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