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GRADIENT RICCI SOLITONS WITH A
CONFORMAL VECTOR FIELD

Ramesh Sharma

Abstract

We show that a connected gradient Ricci soliton (M, g, f, λ) with con-
stant scalar curvature and admitting a non-homothetic conformal vec-
tor field V leaving the potential vector field invariant, is Einstein and
the potential function f is constant. For locally conformally flat case
and non-homothetic V we show without constant scalar curvature as-
sumption, that f is constant and g has constant curvature.

2010 Mathematics Subject Classification: 53C25,53C44

Keywords and phrases : Gradient Ricci soliton, constant scalar curvature,
conformal vector field.

1 Introduction

Let M denote a smooth n-dimensional manifold, g a Riemannian metric and
X a smooth vector field on M , and λ a real constant. Then the system
(M, g,X, λ) is said to define a Ricci soliton if

LXg + 2 Ric = 2λg (1)

where L denotes the Lie-derivative operator and Ric the Ricci tensor of g.
Thus a Ricci soliton is a generalization of an Einstein metric for which X
is Killing. The Ricci soliton is said to be shrinking, steady, and expanding
according as λ is positive, zero, and negative respectively. If the vector field
X is the gradient of a smooth function f , i.e. X = ∇f , then (M, g, f, λ) is
called a gradient Ricci soliton, in which case the equation (1) becomes

Hess f + Ric = λg (2)

where Hess denotes the Hessian operator with respect to g. An important
result of Perelman [9] says that a compact Ricci soliton is gradient. The
gradient Ricci soliton is said to be trivial when f is constant and g is Einstein.
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For a general Ricci soliton vector field X, we have the following formula
(Chow et al [1]):

LXS = 2|Ric |2 + ∆S − 2λS (3)

for the scalar curvature S, where ∆ = Tr .(Hess) denotes the Laplacian op-
erator of g.

In [3], Fernández-López and Garćıa-Ŕıo showed that conformally flat gradient
Ricci solitons are locally isometric to a warped product of an interval and a
real space form. This result was generalized to include the Lorentzian case by
Brozos-Vázquez, Garćıa-Ŕıo and Gavino-Fernández in [2]. We also note that

a Riemannian n-manifold admitting a maximal (n+1)(n+2)
2

-parameter group
of conformal transformations is conformally flat. Therefore it is interesting
to examine the effect of the existence of a 1-parameter group of conformal
transformations generated by a conformal vector field V on a gradient Ricci
soliton. Motivated by this problem, we prove

Theorem 1 If (M, g, f, λ) is a connected gradient Ricci soliton with con-
stant scalar curvature and admits a non-homothetic conformal vector field
V leaving the potential vector field ∇f invariant, then g is Einstein and the
potential function f is constant.

Remark 1. Theorem 1 was motivated by a similar result of Jauregui and
Wylie [5]: “A gradient Ricci soliton admitting a non-homothetic conformal
vector field V that preserves the gradient 1-form df (i.e. ∇V f is constant)
is Einstein and f is constant”. We note that the hypothesis “∇V f is con-
stant” in the result of Jauregui and Wylie, does not imply the hypothesis
“V leaves the potential vector field ∇f invariant)” of Theorem 1. For f con-
stant, g is Einstein (scalar curvature is obviously constant) for which Yano
and Nagano [12] proved: “A complete Einstein manifold admitting a com-
plete non-homothetic conformal vector field is isometric to a round sphere.”
However, if only M is complete and V not necessarily complete, then by a re-
sult of Kanai [6] (stated also in Kühnel and Rademacher [7]), M is isometric
to one of the following spaces: Sn, En, Hn, the warped product R ×exp M∗
where (M∗, g∗) is complete and Ricci flat, or the warped product R×coshM∗
where (M∗, g∗) is complete and Einstein with S∗ = −1.

Remark 2. Constant scalar curvature gradient Ricci Solitons were stud-
ied by Petersen and Wylie [10] who showed that a shrinking (respectively,
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expanding) gradient Ricci soliton with constant scalar curvature S satisfies
0 ≤ S ≤ nλ (respectively, nλ ≤ S ≤ 0). Also, g is flat if S = 0 and Ein-
stein when S = nλ. Fernández-López and Garćıa-Rı́o [4] showed that, if an
n-dimensional complete gradient Ricci soliton has constant scalar curvature
S then S ∈ {0, λ, . . . (n− 1)λ, nλ}. Thus the problem of classifying gradient
Ricci solitons with constant scalar curvature is, in general, open.

For the case when V is homothetic, we prove

Proposition 1 If (M, g, f, λ) is a gradient Ricci soliton with a homothetic
vector field V leaving the potential vector field ∇f invariant, then either (i)
it is a Gaussian soliton, or (ii) V is Killing. In case (ii), either the soliton
is steady or V preserves f .

A conformal vector field V on a Riemannian manifold (M, g) is defined by

LV g = 2σg (4)

where σ is a smooth function on M . V is homothetic when σ is constant,
and is Killing when σ = 0. Denoting the Riemannian connection as well as
the gradient operator of g by ∇ we have the following formula:

(LV∇)(Y, Z) = (Y σ)Z + (Zσ)Y − g(Y, Z)∇σ (5)

where Y, Z denote arbitrary smooth vector fields on M . We will follow this
notation in the next section.

2 Proofs Of Theorem 1 and Proposition 1

Proof Of Theorem 1. A straightforward computation using the definition
(2) provides

R(Y, Z)∇f + (∇YQ)Z − (∇ZQ)Y = 0 (6)

where R denotes the curvature tensor and Q the Ricci tensor of type (1,1)
such that Ric(Y, Z) = g(QY,Z). Let (ei) (i = 1, . . . , n) be a local orthonor-
mal frame on (M, g). Substituting ei for Y in (6), taking inner product with
ei, summing over i, and using the twice contracted second Bianchi identity:
div(Q) = 1

2
dS yields the known formula

Q(∇f) =
1

2
∇S (7)
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Next, differentiating |∇f |2 along an arbitrary vector field, and using equa-
tions (2) and (7) gives the known formula

|∇f |2 + S − 2λf = c (8)

where c is a real constant. As S is constant by hypothesis, equation (7)
reduces to

Q(∇f) = 0. (9)

At this point, Lie differentiating the relation: df = g(∇f, .) along the con-
formal vector field V , noting that Lie derivative commutes with exterior
derivative d, and using the hypothesis LV∇f = 0, we find d(LV f) = 2σdf .
Applying d on it and using the Poincar’e lemma: d2 = 0 we obtain

(dσ) ∧ (df) = 0. (10)

Let us now express equation (2) in the form

∇Y∇f +QY = λY

Taking its Lie derivative along V , using the commutation formula (see [11])

LV∇YZ −∇YLVZ −∇[V,Y ]Z = (LV∇)(Y, Z)

with the choice Z = ∇f , along with the hypothesis LV∇f = 0 and equations
(2) and (5) yields

(LVQ)Y = −g(∇f,∇σ)Y. (11)

Now we substitute ei for Y in (11), take inner product with ei, sum over i,
and use the constant scalar curvature hypothesis in order to obtain

g(∇f,∇σ) = 0 (12)

The equations (10) and (12) show that

(dσ ∧ df)(∇σ,∇f) = |∇σ|2|∇f |2 = 0

i.e.
|∇σ||∇f | = 0. (13)

As σ is not constant on M , ∇σ 6= 0 on an open subset U of M . So, from
(13), ∇f = 0 on U . Now the g-trace of (2) is ∆f + S = nλ on M . Since
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∆f = 0 on U , we have S = nλ on U . By hypothesis, S is constant on M
and M is connected, and therefore S = nλ on M . Using equation (3) with
X = ∇f gives |Ric |2 = λS. Hence the identity: |Ric−S

n
g|2 = |Ric |2 − S2

n

provides Ric = λg, i.e. g is Einstein. Thus equation (2) reduces to ∇∇f = 0,
which implies that |∇f | is constant. As ∇f = 0 on U and M is connected, we
conclude that∇f = 0 onM , and so f is constant onM , completing the proof.

Proof Of Proposition 1. Here we have equation (4) with constant σ.
Writing equation (2) as

L∇fg + 2 Ric = 2λg,

Lie-differentiating it along V and noting that a homothetic vector field pre-
serves the Ricci tensor we get

LVL∇fg = 4λσg

Using the identity LYLZ − LZLY = L[Y,Z] and hypothesis [V,∇f ] = 0 in the
above equation we find

σ(L∇fg − 2λg) = 0

Hence, either (i) L∇fg − 2λg = 0, or (ii) σ = 0. Equation in (i) is basically
∇∇f = λg, and by a result (Theorem 2, IB) of Okumura [8]), implies that
g is flat and hence is a Gaussian soliton. In case (ii), V is Killing and hence
LV S = 0. Also, Lie-differentiating (8) along V and noting that LV∇f = 0
and LV g = 0 imply LV |∇f |2 = 0 we find that either λ = 0 or V preserves f .
This completes the proof.

3 Conformally Flat Case

Finally, taking into account the result of [3] for a locally conformally flat
gradient Ricci soliton as stated in Section 1, we examine this case with the
hypothesis LV∇f = 0 of Theorem 1, and without constant scalar curvature
assumption and prove

Proposition 2 If (M, g, f, λ) is a locally conformally flat gradient Ricci soli-
ton and admits a non-homothetic conformal vector field V leaving with the
potential vector field ∇f invariant, then f is constant and (M, g) has con-
stant curvature.
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Proof. If f is constant, then we are done. So, ∇f 6= 0 on a neighborhood
of some point in M . By a result of [3] we know that (M, g) is locally the
warped product of an interval I and an (n − 1) dimensional manifold N of
constant curvature c with metric g = dt2 + ψ2(t)γ, where t is the coordinate
on I and ψ is the warping function. Also, f is a function of t. The gradient
Ricci soliton equation (2) yields (as mentioned in [2])

f̈ = λ+ (n− 1)
ψ̈

ψ
(14)

ψψ̇ḟ = λψ2 − (n− 2)c+ ψψ̈ + (n− 2)(ψ̇)2 (15)

where an over-dot denotes partial differentiation with respect to t. Let us
decompose the conformal vector field V on M as V = α∂t + Uk∂k where α
and Uk depend on t as well as the coordinates xi on N . The components of
conformal Killing equation (4) provide

α̇ = σ (16)

∂iα = −(∂tU
k)gik (17)

LUgij = 2(σ − αψ̇
ψ

)gij (18)

where U = Uk∂k. The hypothesis: LV∇f = [V,∇f ] = 0 shows

ḟ α̇ = αf̈ (19)

∂tU
k = 0.

Hence Uk = Uk(xi) and equation (17) implies α = α(t). Equation (19)
integrates to α = ḟ (up to a constant multiple which can be taken 1). Con-
sequently, (16) assumes the form

σ = f̈ (20)

Equation (18) shows that U is homothetic on (N, γ), i.e. LUγ = 2kγ where
k is constant such that

f̈ − ḟ ψ̇
ψ

= k. (21)
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Since (N, γ) has constant curvature c, γ Ric = c(n− 2)γ. Lie-differentiating
it along U provides ck = 0. This gives rise to two cases (i ) c = 0, (ii) k = 0.
For case (i) equations (14), (15) and (21) give us

ψ̈

ψ
− (ψ̇)2

ψ2
=

k

n− 2
(22)

which integrates to ψ̇
ψ

= k
n−2t + a and further to ψ = e

k
n−2

t2+at+b where a, b

are arbitrary constants. Using (22) in (15) and differentiating with respect
to t we get

f̈ =
k

n− 2
[n− 1− (λ+

k

n− 2
)(

k

n− 2
t+ a)−2] (23)

Comparing it with (14) we get the polynomial equation

(n− 1)(Kt+ a)4 + λ(Kt+ a)2 +K(λ+K) = 0.

where K = k
n−2 . The above equation implies that k = 0. Hence (23) reduces

to f̈ = 0, and from (16) we get σ = 0 contradicting the non-homotheticity of
V . Now we examine the case (ii) k = 0 for which (21) integrates to ḟ = ψ.
Using this in (14) we have

ψ̈ =
ψ

n− 1
(ψ̇ − λ) (24)

Combining this with (15) provides ψ2ψ̇ = λψ2 + (n − 1)(ψ̇)2 − (n − 1)c.
Differentiating it with respect to t and using (24) gives ψ2(ψ̇ − λ) = 0. But
ψ 6= 0 for any t (as g is positive-definite), and so ψ̇ = λ. As already found,
ḟ = ψ. Thus f̈ = λ and so from (20) we conclude that σ = λ contradicting
the non-homotheticity of V . This completes the proof.

4 Concluding Remark

The assumption [V,∇f ] = 0 in Theorem 1 and Proposition 2 is needed in the
proofs, and is trivially satisfied for constant f in which case g is Einstein.
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