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Capacity Reduction and Fire Load Factors for Design of Steel 

Members Exposed to Fire 

Shahid Iqbal,1 and Ronald S. Harichandran,2 F.ASCE 

 

Abstract 

A general reliability-based methodology is proposed for developing capacity 

reduction and fire load factors for design of steel members exposed to fire. The 

effect of active fire protection systems (e.g., sprinklers, smoke and heat detectors, 

fire brigade, etc.) in reducing the probability of occurrence of a severe fire is 

included. The design parameters that significantly affect the fire design of steel 

members are chosen as random variables. Raw experimental data published in the 

literature was analyzed to obtain the statistics of parameters for which no statistical 

information was available in the literature. Model errors associated with the thermal 

analysis models are also characterized based on experimental data. It is found that 

uncertainty associated with the fire design parameters is significantly higher than 

that of room temperature design parameters. To illustrate the proposed 

methodology, capacity reduction and fire load factors are developed for simply 

supported steel beams in U.S. office buildings, and it is shown that for consistent 
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reliability these factors should vary depending on the presence of active fire 

protection systems in a building. 

   

Keywords: Structural reliability, fire design, statistics of fire parameters, steel members 

Introduction 

The last decade has seen the promotion of performance-based codes for the fire design of 

steel members. These codes allow use of engineering approaches for fire design instead of 

prescriptive approaches (Ruddy et al. 2003) that are commonly used. For example, Appendix 4 

of the 2005 AISC Specifications (referred to hereafter as “AISC Specifications”) now allows 

steel members to be designed against fire using room temperature design specifications and 

reduced material properties. Similar provisions were developed by the European Convention for 

Constructional Steel work (ECCS 2001). Using this engineering approach, the verification of 

design for strength during fire requires that the load effects are less than the capacity of the 

structure. This leads to satisfying the design equation 

 fnffn RW ,, f£  (1) 

where Wn,f is the load effect at the time of fire, Rn,f is the nominal capacity at the time of fire, and 

ff  is the capacity reduction factor. The AISC Specifications (AISC 2005a) allow using the same 

capacity reduction factors for fire design as those used for room temperature design. For 

example, ff  = 0.9 is suggested for steel beams and columns. Most other codes suggest that a 

capacity reduction factor of 1.0 be used (e.g., in the Eurocode 3 (EN 2005), the partial safety 

factor Mg  is 1.0 for fire design). This recommendation is based on arguments that the probability 

of fire occurrence and the strength falling below the design value simultaneously is very small, 
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and that fire design is based on the most likely expected strength (Buchanan 2001). Also, it is 

expected that live loads under fire conditions are likely to be smaller than those at room 

temperature conditions and hence there will be enough reserve strength available (Buchanan 

2001). However, limited work has been done to develop capacity reduction factors based on 

reliability analysis (Magnusson and Pettersson 1981). 

Fire safety is attained through two components: (1) active fire protection systems such as 

automatic sprinklers which help in controlling and suppressing the fire; and (2) passive fire 

protection systems such as structural and non-structural components of a building which control 

the spread of fire and prevent or delay the collapse of compartments. Passive fire protection can 

be achieved by protecting structural members in a variety of ways, e.g., by applying spray 

applied materials (sprayed mineral fiber, vermiculate plaster etc.), using intumescent coating, or 

using board materials (gypsum board) as insulation. The AISC Specifications suggest that while 

describing the design fire, due consideration should be given to the effectiveness of all active fire 

protection systems (sprinklers, smoke and heat detectors, etc.). The Commentary to Section 

4.2.1.5 of Appendix 4 of the 2005 AISC Specifications states that while describing the design 

fire, the fire load may be reduced by up to 60 percent if a sprinkler system is installed in the 

building. Automatic sprinklers reduce the probability of occurrence of a severe fire. The 

reduction in fire load should be based on proper reliability analysis that includes the effect of 

sprinklers on the occurrence of a severe fire, and correspondingly on the probability of failure of 

structural steel members. Recently, a study was conducted in Europe through a research project 

of the European Coal and Steel Community (ECSC) (herein referred to as the ECSC study) to 

develop fire load factors by taking into account the variability of the fire load and the effect of 

active fire protection systems (ECSC 2001). However, the fire load factors were obtained using 
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simplified assumptions and the study did not account for variability in other parameters. It is not 

apparent whether rigorous reliability analysis would yield results similar to those of the ECSC 

study. 

A general methodology is presented in this paper for developing capacity reduction and fire 

load factors. In addition, the uncertainties of design parameters that significantly affect the fire 

design are characterized. The statistics of the random variables and model errors derived are then 

used for deriving capacity reduction and fire load factors for simply supported steel beams. 

To better understand the performance functions, the engineering approach for designing 

steel members subjected to fire conditions is described next. 

Engineering Approach for Designing Steel Members Exposed to Fire 

In the engineering approach, the nominal capacity of steel members exposed to fire, Rn,f, is 

a function of fabrication parameters, Fi, and reduced material properties, kj(Ts)Mj, and may be 

expressed as 

 ( )kskslRfn MTkMTkFFfR )(,.......)(,,....... 111, =  (2) 

where the Fi are dimensional and sectional properties (e.g., depth of section, cross-sectional area, 

etc.), and Mj are the material properties at room temperature (e.g., yield strength, etc.). kj(Ts) are 

factors that account for reduction in strength and stiffness of steel at elevated temperature, and 

their values at different values of steel temperature, Ts, are given in the AISC  Specifications. 

According to the AISC Specifications, the design action (applied axial force, bending 

moment or shear force, etc.) is determined from the load combination given by 

 TSLDU +++= 2.05.02.1  (3) 

where, D, L and S are nominal dead, live and snow load effects, respectively, and T is the load 

effect induced by the fire itself (such as additional bending moment induced due to thermal 
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expansions being restrained by the surrounding structure). The magnitude of the term T in Eq. 

(3) will depend both on the type of restraint and on the steel temperature, Ts. For of a simply 

supported beam, the term T in Eq. (3) will be zero because there will be no restraint effects under 

fire. 

Under fire conditions, both the nominal capacity, Rn,f, estimated through Eq. (2) and the 

applied load effect, T, in Eq. (3), depend on the steel temperature, Ts, which in turn depends on 

the design fire (or time-fire temperature curve). The design fire depends on many factors such as 

ventilation conditions, thermal properties of the boundaries, the fire load (representative of 

combustible materials present), etc. As mentioned earlier, the Commentary to the AISC 

Specifications states that while describing the design fire, the fire load may be reduced by up to 

60 percent if a sprinkler system is installed in the building. In a similar vein, Eurocode 1 (EN 

2002) suggests a reduction in the fire load, while the ECSC study recommends either a reduction 

or increase in the fire load depending on the intended reliability. This reduction or increase 

(called fire load factor, gq, in this study) is to be applied to the fire load used in describing the 

design fire, and will affect the nominal capacity of all members and the fire-induced load effect, 

T, in Eq. (3) for restrained members. 

At elevated temperatures, the strength and stiffness of steel reduces significantly, and if 

unprotected, steel members fail within a short time. Therefore, steel members are generally 

protected by fire protection material to slow down the rise of the steel temperature. The required 

thickness of the fire protection material can be determined using an iterative procedure, and the 

fire temperature in the compartment and the steel temperature of the member required for this 

procedure can be estimated as described in the next section. 
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Fire and steel temperatures 

  The fire temperature, Tf, can be estimated using a suitable mathematical model from the 

literature (SFPE 2000 and 2004). In this study, the Eurocode parametric fire model modified by 

Feasey and Buchanan (2002) is used to estimate the fire temperature under real fire scenarios. Tf 

is a function of the opening factor, Fv, fire load density, qt, and thermal absorptivity, b.  

The steel temperature can be calculated using any advanced finite element software. 

However, most design specifications such as the AISC Specifications and Eurocode 3 (EN 

2005), allow the steel temperature to be calculated using simple thermal analysis methods such 

as the lumped heat capacity method.  

The lumped heat capacity method assumes that the steel section is a lumped mass at 

uniform temperature. The heat balance differential equation for steel members protected by 

insulation can then be written as (Buchanan 2001) 
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where dT/dt = rate of change of steel temperature, F = surface area of unit length of the member 

(m2) ,V = volume of steel per unit length of the member (m3), ρs = density of steel (kg/m3), cs = 

specific heat of steel (J/kg.K), ρi = density of the insulation (kg/m3), ci = specific heat of 

insulation (J/kg.K), di  = thickness of insulation (m), ki = thermal conductivity of insulation 

(W/m.K), Ts = steel temperature (°C), and Tf = fire temperature (°C). 

Eq. (4) can be written in finite difference form and the steel temperature can then be 

calculated at any time using a finite difference method that can be implemented in a spreadsheet. 

However, for incorporation into performance functions used in reliability analysis, a closed-form 



 7 

expression for calculating the maximum steel temperature is convenient. The closed-form 

solution of Eq. (4) was developed by Iqbal and Harichandran (2009). 

Eq. (4) is used to estimate the temperature of steel members protected by insulation. The 

temperature of unprotected steel members can be estimated through a similar equation 

(Buchanan 2001). The heat balance differential equation for unprotected steel members is not 

presented since in the U.S. steel columns are always protected and steel beams are almost always 

protected. 

The codes allow using the lumped mass method but caution that this method may be overly 

conservative for certain situations such as for a composite steel beam with a concrete slab on top 

in which a significant thermal gradient can occur through the depth. In this study, the lumped 

mass method is used because it is convenient within a reliability-based framework. The error 

arising from this method because of the assumption of a uniform temperature distribution is 

accounted for through a professional factor. 

Methodology for Developing Capacity Reduction and Fire Load Factors 

 Development of capacity reduction and fire load factors involves three steps: 

(1) characterization of random design parameters; (2) selection of an appropriate performance 

function and characterization of the corresponding model errors; and (3) selection of a target 

reliability index or target probability of failure. These are described next. 

Statistics of random parameters 

The design parameters that significantly affect the fire design of steel members were 

chosen as random variables, and their means, coefficients of variation (COV), and distribution 

types are summarized in Table 1. The statistics of the arbitrary-point-in-time live load, fire load 

and ratio of floor area to total surface area of the fire compartment are specific to U.S. office 
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buildings. The remaining parameters are general and apply to steel buildings of all use 

categories. The statistics of the dead and arbitrary-point-in-time live loads in Table 1 were 

reported by Ellingwood (2005) and Ravindra and Galambos (1978). We analyzed raw 

experimental data as discussed below to obtain the statistics of all parameters in Table 1 except 

for the fire load, arbitrary-point-in-time live load and dead load. 

Fire Load 

The fire load is based on the quantity of combustible materials present in a fire compartment, and 

is a measure of the total energy released in a fire. Culver (1976) reported statistics of the fire load 

for 23 typical U.S. office buildings. The fire load had a mean of 564 MJ/m2 of floor area and a 

COV of 0.62. Culver reported the mean fire load in lb/ft2 of floor area and we converted it to 

MJ/m2 of floor area using a calorific value of wood of 17.5 MJ/kg. The ECSC study established 

that the fire load has a Gumbel distribution. 

Ratio of Floor Area to Total Surface Area of the Compartment  

Culver (1976) reported the fire load per unit floor area of the compartment. For calculating 

the fire temperature, the fire load needs to be converted to correspond to the unit area of the total 

surfaces of the compartment. This conversion can be done using 

 
t

f
ft A
A

qq =  (5) 

where qt = fire load per unit total surface area of the compartment, qf = fire load per unit floor 

area of the compartment, Af = floor area of the compartment, and At = total surface area of the 

compartment. 

The ratio Af/At varies for each compartment and should therefore be treated as a random 

variable in the reliability analysis. No statistical information is available in the literature about 
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this ratio. Culver (1976) reported the range of floor areas for 23 office buildings in the U.S. but 

did not explicitly report the height of the rooms. Therefore, the height of the rooms was assumed 

to be 12 feet to establish the statistical parameters of the ratio Af/At. Additionally, structural and 

architectural drawings of three representative office buildings in Detroit were examined to 

establish the mean, COV and distribution of the ratio Af/At, and these were combined with those 

obtained from the data reported by Culver (1976). The combined mean, COV and distribution of 

the ratio Af/At  are given in Table 1. 

Opening Factor 

The opening factor, tvvv AHAF /= , represents the ventilation conditions present in a fire 

compartment, where, Av = area of the openings and Hv = height of the openings. The duration 

and severity of the fire depends on the value of the opening factor, which in turn depends on the 

sizes of windows and doors in a compartment. A building and its structural components are first 

designed for room temperature conditions and then for fire. The values of the opening factor for 

a fire compartment can be accurately estimated from the architectural drawings of a building and 

is not likely to be significantly different from the design or nominal values. Therefore, it is 

reasonable to treat the opening factor similar to the dead load in reliability analysis. For the 

opening factor we assumed the nominal values to be the mean values, a COV of 0.05, and a 

normal distribution. 

Thermal Absorptivity of Compartment Enclosure 

The thermal absorptivity, b, of the compartment boundaries is a measure of the amount of 

heat absorbed by the compartment boundaries and may be calculated through 

 pckb r=  (6) 
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where, k, ρ and cp are thermal conductivity, density and specific heat of the bounding material, 

respectively. The thermal absorptivity is a function of temperature, but the Eurocode 1 (EN 

2002) allows room temperature properties to be used for design. We performed a detailed 

analysis to study the effect of the temperature variation of b on the steel temperature, and the 

results indicated that it is reasonable to use room temperature values of b.  

There is no information available in the literature about the variability of b for different 

bounding materials. However, some researchers have reported thermal properties of some 

commonly used bounding materials such as normal and lightweight concretes and gypsum board. 

These reported room temperature thermal properties were used to characterize b for normal and 

lightweight concretes and gypsum board as described below. 

Thermal properties (density, thermal conductivity and specific heat) of gypsum boards 

reported by different researchers (Carino et al. 2005; Manzello et al. 2008; Mehaffey et al. 1994; 

Thomas 2002; Wullschleger and Wakili 2008) were used to obtain the thermal absorptivity, bg, 

through Eq. (6). The statistics of bg based on these calculated values are shown in Table 1. The 

mean value of 423 Ws0.5/m2K is close to the value of 410 Ws0.5/m2K reported by Buchanan 

(2001) for gypsum board. 

In case of normal and lightweight concretes, all three corresponding thermal properties 

were not available for a particular tested specimen. Therefore, first the statistics of density (ρ), 

thermal conductivity (k) and specific heat (cp) for both types of concretes were obtained using 

test data. Thermal properties were reported by Harmathy and Allen (1973), Lie and Kodur 

(1996), Shin et al. (2002), Schneider et al. (1981),  and Whiting et al. (1978) for normal weight 

concrete, and Harmathy and Allen (1973), Stukes et al. (1986), and Whiting et al. (1978) for 

lightweight concrete. For normal weight concrete, Schneider et al. (1981) included test data 
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obtained in six other studies which was also used for characterizing thermal properties of normal 

weight concrete. The statistics of b for normal and lightweight concretes shown in Table 1 were 

obtained using the distributions of the density, thermal conductivity and specific heat through 

Monte Carlo simulations. The mean value of bNWC = 1830 Ws0.5/m2K compares well with the 

value of 1900 Ws0.5/m2K reported by Buchanan (2001). The mean value of bLWC = 640 

Ws0.5/m2K compares well with the value of 660.6 Ws0.5/m2K reported by Kirby et al. (1994) for 

lightweight concrete blocks.  

Buchanan (2001) studied the effect of two types of bounding materials (normal weight 

concrete having b = 1900 Ws0.5/m2K and gypsum board having b = 410 Ws0.5/m2K) on the fire 

temperature. A typical commercial office building constructed from a mixture of these materials 

on the walls and ceiling would give values of fire temperature in between those obtained by 

using either of the individual materials (Buchanan 2001). Therefore, statistics of b were also 

obtained for a compartment assuming that 50% of the total surface area was constructed of 

normal weight concrete and the other 50% of gypsum board. The total thermal absorptivity of 

this compartment can be expressed as 

 
t

NWCtgt
NWCg A

bAbA
b

5.05.0 +
=+     (7) 

The mean and COV of bg+NWC for this mixed compartment are also given in Table 1. 

To study the fire and steel temperatures likely to occur in real fire scenarios, Kirby et al. 

(1994) conducted 9 fire tests using different materials (such as lightweight concrete blocks, 

autoclaved aerated concrete slabs, fluid sand, ceramic fiber, and fireline plasterboard) as walls, 

roof and floor of the compartment. The combined value of thermal absorptivity in all tests ranged 

from 350-755 Ws0.5/m2K. The statistics of b developed in this study effectively cover the values 

of b used by Kirby et al. (1994).  
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Thickness of Insulation or Fire Protection Materials 

Steel members may be protected using either spray applied fire protection materials or 

board systems. Carino et al. (2005) studied the variation of thickness of spray applied fire 

protection materials used in the World Trade Center (WTC). They observed that the average 

thickness is generally higher than the specified thickness and that the thickness is distributed 

lognormally. Their results were used for the COV and distribution type for insulation thickness. 

Because the thicknesses of fire protection materials used in the WTC were determined using 

prescriptive approaches, the mean of the insulation thickness was not taken from this study. 

Instead, based on the analysis in the report and conversation with a fire protection expert 

(Ferguson 2008), the mean was taken to be 1/16-inch higher than the thickness required using 

performance-based design. There is no information available on the variability of thickness of 

board materials, but since they are produced under controlled conditions, the nominal thickness 

was taken as the mean value and the COV was assumed to be 0.05. 

Thermal Conductivity and Density of Fire Protection Materials 

Bruls et al. (1988) studied the variation of thermal conductivity at different temperatures. 

Although, thermal conductivity varies with temperature, they concluded that since the failure of 

structural steel elements generally occurs at a temperature of 400 to 600°C, the thermal 

conductivity corresponding to a critical temperature of 500°C can be used in design.  

Statistical analysis of the thermal conductivity in the temperature range of 400-600°C for 

eight representative materials used in the U.S. (five reported by Bentz and Prasad 2007, two 

reported by Carino et al. 2005, and one tested at Michigan State University) was performed. The 

mean, COV and distribution type established from this statistical analysis are given in Table 1.   
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Room temperature values of density reported in the literature for different fire protection 

materials (Bentz and Prasad 2007, and Carino et al. 2005) were used to obtain its statistics. The 

mean and COV of the density of spray applied fire protection materials are given in Table 1. Due 

to insufficient data, it was not possible to estimate a distribution and a normal distribution was 

assumed.  

Different types of board materials can be used as fire protection materials (e.g., fiber-

silicate or fiber calcium silicate boards, and gypsum plaster (Buchanan 2001)). Thermal 

properties of all of these boards are generally not easily available because of their proprietary 

nature. However, thermal properties of gypsum boards have been reported by various researchers 

and were used to obtain the statistics of thermal conductivity and density. Statistics of thermal 

conductivity of gypsum board materials in the temperature range of 400-600°C were obtained 

using test data (Bentz and Prasad 2007, Carino et al. 2005, Manzello et al. 2003, Mehaffey et al. 

1994, Sultan 1996, and Thomas 2002) and are shown in Table 1. 

Room temperature values of the density of gypsum board reported by different researchers 

(Carino et al. 2005, Mehaffey et al. 1994, Thomas 2002, Tsantaridis et al. 1999, and 

Wullschleger and Wakili 2008) were used to obtain the statistics that are shown in Table 1.  

Buchanan (2001) reported typical values of thermal conductivity to be 0.15 W/m.K and 

0.20 W/m.K, and typical values of densities to be 600 kg/m3 and 800 kg/m3, for fiber-silicate or 

fiber calcium silicate boards, and gypsum plaster, respectively. The mean density of 745 kg/m3 

and mean thermal conductivity of 0.16 W/m.K fall within the range of reported values. 

Therefore, although the statistics of density and thermal conductivity were obtained using test 

data of gypsum boards only, they should adequately represent other types of board materials as 

well. 
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Performance function for reliability analysis 

Applied Loads 

Ellingwood (2005) showed that the probability of coincidence of a fire with maximum 

values of live load, roof live load, snow, wind, or earthquake loads is negligible, and a structure 

is likely to be loaded to only a fraction of the design load when a fire occurs. Therefore, it is 

appropriate to use the combination of dead and arbitrary-point-in-time live load for reliability 

analysis under fire conditions. This is consistent with Beck’s (1985) recommendation. Therefore, 

the load effect Wf  for reliability analysis may be calculated as 

 Wf = E(cDAD + cLBLapt) (8) 

where cD and cL = deterministic influence coefficients that transform the load intensities to load 

effects (e.g., moment, shear, and axial force), A and B = random variables reflecting the 

uncertainties in the transformation of loads into load effects, E = a random variable representing 

the uncertainties in structural analysis, and D and Lapt = random variables representing dead and 

arbitrary-point-in-time live load. The statistics of D and  Lapt are given in Table 1. The statistics 

of parameters A, B and E are: (1) mean of A = 1.0, COV of A = 0.04; (2) mean of B = 1.0, COV 

of B = 0.20; and (3) mean of E = 1.0, COV of E = 0.05 (Ravindra and Galambos 1978). 

Capacity of Steel members  

The actual capacity of steel members under fire can be obtained by modifying the 

nominal capacity given by Eq. (2) to 

 ( )kksskssllRf MmTtkMmTtkFfFffPR )(,.......)(,,........ 11111=  (9) 

where P, fi, mj, and ts are the non-dimensional random variables defined below. 

P = “Professional” factor, reflecting uncertainties of the assumptions used in 

determining the capacity from design equations. These uncertainties may result 
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from using approximations in place of exact theoretical formulas, and from 

assumptions such as perfect elasto-plastic behavior and a uniform temperature 

across the section.  

fi = Random variable that characterizes the uncertainties in “fabrication.” 

mj = Random variable that characterizes uncertainties in “material properties.” 

ts = Random correction factor that accounts for differences between the steel 

temperature obtained from models and that measured in actual tests. 

Limit State Equation 

Using Eqs. (8) and (9), the limit state equation for reliability analysis under fire conditions 

may be written as 

 ff WRg -=)(x  (10) 

where x denotes a vector containing all the random variables. The probability of failure, pf, of a 

steel element under fire is ]0)([ <= xgPp f . 

It is assumed that the random variables fi and mj are the same as those used for developing 

LRFD  specifications for ambient temperature conditions and their statistics are available in the 

literature. The statistics of P are specific to each design equation, cannot be generalized, and can 

be obtained from a comparison between the predicted capacity and test results. The statistics of ts 

are characterized below.  

Model Error for Steel and Fire Temperatures 

The maximum temperature of steel sections estimated using Eq. (4) differs from that 

measured in actual fire tests due to: (1) the approximation and assumptions used in the models 

for estimating fire and steel temperatures; and (2) differences between predicted and actual heat 

absorbed, ventilation conditions, and duration of burning. To account for the differences in 
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calculated and measured steel temperatures, the model error was characterized as described 

below, both for steel beams (three sided exposures) and steel columns (four sided exposure). 

The experimental temperature of steel elements has been reported by many researchers but 

most tests were carried out under standard fires instead of real fires, and thus cannot be used to 

estimate the error arising from the fire models. Kirby et al. (1994) carried out a series of nine real 

fire tests and recorded the temperature of protected and unprotected steel elements. The tests 

were performed for a range of fire loads (380 – 760 MJ/m2 of floor area), for different opening 

conditions (Fv = 0.0029 – 0.062 m1/2), and various types of materials were used as compartment 

boundaries in order to represent all possible real fire scenarios. Foster et al. (2006) reported the 

temperature of four protected steel columns. In this test, the fire load was 720 MJ/m2 of floor 

area, and the opening factor was 0.043 m1/2.  

The model error for the temperature of steel beams, tsb, was characterized using the test 

data reported by Kirby et al. (1994), and the model error for the temperature of steel columns, tsc, 

was characterized using the test data reported by Kirby et al. (1994) and Foster et al. (2006). tsb 

has a mean of 0.98 and COV of 0.11, and tsc has a mean of 1.05 and COV of 0.13. Both, tsb and 

tsc were best described by the Gumbel distribution. 

In the last decade, many real fire tests were carried out all over the world, especially in the 

U.K. In most of these tests the steel beams were unprotected, and therefore, reported steel 

temperatures cannot be used for characterizing the model error for protected beams. In almost all 

tests, steel columns were protected but various parameters (e.g., type, thickness and properties of 

insulation, type, size and thermal properties of bounding materials) required as input data for 

estimating the temperature of columns were not explicitly reported. Therefore, the experimental 

temperatures recorded in these tests could not be used. 
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Probability of failure and target reliability index 

The reliability index, β, is a relative measure of safety of a designed structural component, 

and is related to the probability of failure. On the other hand, the target reliability index, βt,  

controls the safety factors used in design equations. CIB W 14 (1986) suggests that the rare 

occurrence of a severe fire should be taken into account while developing safety factors for fire 

design. The presence of active fire protection systems such as automatic sprinklers, fire brigade, 

etc., reduce the probability of occurrence of a severe fire and hence reduce the probability of 

failure. Therefore, the reduced probability of failure under fire can be accounted for by using a 

reduced target reliability index. 

 A detailed methodology for calculating the target reliability index, βt, by incorporating the 

effect of active fire protection systems in reducing the probability of occurrence of a severe fire 

was presented in the ECSC study (ECSC 2001). The ECSC study also suggested appropriate 

values for the effectiveness of different active fire protection systems in reducing the probability 

of occurrence of a severe fire. Using the methodology described in the ECSC study, the target 

reliability indices were estimated for typical fire compartments (ranging in floor areas from 25-

500 m2) of U.S. office buildings. It was found that it is reasonable to use target reliability index 

values ranging from zero to 2.0 for developing capacity reduction and fire load factors. Since the 

probability of occurrence of a severe fire varies depending on the presence of active fire 

protection systems, the target reliability index also varies for different design situations. 

To account for the reduced probability of occurrence of a severe fire, a similar approach to 

the one presented in the ECSC study was suggested by Ellingwood and Corotis (1991) for fire 

resistant structural design. They suggested a probability of failure for fire situations that 
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corresponds to βt of about 1.5, which falls within the range of zero to 2.0 found from the ECSC 

study. 

Capacity Reduction and Fire Load Factors for Simply Supported Beams 

Predictions of structural capacity under fire are still relatively new and evolving. With improved 

understanding of structural behavior under fire, performance equations may change and future 

design refinements may be necessary. In this section, the bending capacity of simply supported 

beams given in AISC Specifications is used. 

Performance function and statistics of random parameters 

The nominal moment capacity of a simply supported, laterally restrained steel beam 

exposed to fire can be expressed as 

 ysyxfn FTkZM )(, =  (11) 

where Zx = plastic section modulus, Fy = yield strength of steel at room temperature, and ky(Ts) = 

yield strength reduction factor that depends on the temperature, Ts, of the steel member. 

The actual moment capacity can be obtained by modifying Eq. (11) to 

 yFFmsTsbtykxZzPffM y
)(=  (12) 

where fz is a random variable with a mean of 1.03 and COV of 0.034 that characterizes 

uncertainty in Zx (Schmidt and Bartlett 2002), mFy is a random variable with a mean of 1.03 and 

COV of 0.063 that characterizes uncertainty in Fy (Schmidt and Bartlett 2002) and tsb is the 

model error for steel temperature with the statistics given earlier. Steel temperature, Ts, is a 

function of many parameters (see Eq. (4)) whose statistics are given in Table 1. P is the 

professional factor (model error) and is characterized in the next subsection.  

The performance function can be written as 
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 faf MMg ,)( -=x  (13) 

where Ma,f  is the applied moment under fire that can be expressed in terms of basic random 

variables as shown in Eq. (8). 

Professional factor for moment capacity equation 

To account for the difference in the measured capacity of a laterally restrained beam in a 

laboratory and that predicted by Eq. (11), the professional factor, P, representing their ratio was 

characterized using the test results reported by Kruppa (1979) and Wainman (1992). Kruppa 

(1979) reported test results for sixteen beams and Wainman (1992) reported the test results for 

two beams.  P has a mean of 0.99 and a COV of 0.11, and is best described by the lognormal 

distribution. 

Reliability analyses 

Ten laterally restrained beams ranging in length from 3 m (10 ft) to 13.7 m (45 ft) and live 

loads ranging from 2.4 kPa (50 psf) to 4.8 kPa (100 psf) were selected for the reliability study. 

The AISC Specifications were used to first design the beams for ambient temperature conditions. 

The same beams were then designed for fire exposure (b = 640 W/m.K and Fv = 0.02 m1/2) and 

the required thickness of insulation to withstand the design fire was determined using the 

procedure described in Appendix 4 of the AISC Specifications (AISC 2005a) (i.e., the 

engineering approach described earlier). The beams were assumed to be protected by spray 

applied fire protection materials, which is generally the case in the U.S.  

The FERUM (Finite Element Reliability Using Matlab) software (Der Kiureghian 2006) 

was used to perform the reliability analysis. FERUM is a general purpose structural reliability 

software written using Matlab. It can be used to perform reliability analysis using different 

methods, including the first-order reliability method (FORM).  
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The detailed framework for first-order reliability analysis and the simplified expressions 

for obtaining the partial safety factors for each design parameter are described in NBS 577 

(Ellingwood et al. 1980), and is not reproduced here. FORM analysis was performed for each 

design situation (each of the 10 beams) using FERUM. The partial safety factors for each design 

parameter were obtained using the methodology described in NBS 577 for each design situation. 

These individual partial safety factors, except for the fire load, were then combined into a single 

capacity reduction factor. Thus 10 different capacity reduction factors (one for each beam) were 

obtained. Thereafter, a single optimized capacity reduction factor corresponding to dead and live 

load factors of 1.2 and 0.5, respectively, was obtained using the optimization procedure 

described in NBS 577 for each βt value ranging from zero to 2.0. A similar procedure was used to 

obtain the fire load factors corresponding to each βt value. 

Fire load is a major parameter in fire design, and uncertainty associated with the fire load 

has a significant effect on the safety of the design. Therefore, the variability of the fire load on 

overall safety is accounted for through the specific partial safety factor on the fire load. As 

mentioned in the introduction, the Commentary to the AISC Specifications, Eurocode 1, and the 

ECSC study, the fire load may be reduced to account for the effect of active fire protection 

systems installed in the building. These recommendations also motivated use of a separate safety 

factor for fire load. The fire load factor, gq, is to be applied to the fire load used in describing the 

design fire and will affect the nominal capacity. 
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Results 

Capacity reduction factor 

The plot of the capacity reduction factor, ff, vs. the target reliability index, βt, is shown in 

Fig. 1 and is given by 
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Most codes suggest that ff = 1.0 be used. However, ff = 0.9 is suggested in the 

Commentary to the AISC Specifications. Results obtained in this study indicate that the nominal 

capacity need not be reduced (i.e., ff  = 1.0) if βt is less than 1.25, which in turns depends on the 

effectiveness of active fire protection systems in reducing the probability of occurrence of a 

severe fire.  

 Using different capacity reduction factors for different design situations may not be 

desirable from a codification point of view. We described earlier why βt should be varied to 

account for the presence and effectiveness of active fire protection systems. The purpose of 

developing the capacity reduction factor for a range of βt values (0 to 2) instead of a single value 

was to provide options to specification writers. The code authorities may decide to use one βt 

value (e.g., a value of about 1.5 as suggested by Ellingwood and Corotis (1991)) depending on 

their comfort about the effectiveness of active fire protection systems, and thus specify a 

constant capacity reduction factor for each limit state. Since most U.S. buildings are equipped 

with reliable sprinklers, βt is not likely to exceed 1.5 and it may be appropriate to use the 

capacity reduction factor corresponding to βt = 1.5. 
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Fire load factor 

The plot of the fire load factor, gq, vs. the target reliability index is shown in Fig. 1. The 

nominal value of the fire load was taken as the 90th percentile (Buchanan 2001). The value of gq 

for a given βt is 
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When the target reliability index is less than 1.42, the fire load factor given by Eq. (15) is less 

than 1.0 indicating that the fire load can be reduced as suggested in the ECSC study and 

Eurocode 1. The commentary to the AISC Specifications states that the fire load may be reduced 

by up to 60% if a sprinkler system is installed. The maximum reduction should be considered 

only when the automatic sprinkler system is considered to be of the highest reliability, i.e., 

having reliable and adequate water supply, supervision of control valves, and regular schedule 

for maintenance in accordance with NFPA recommendations (NFPA 2002). The reduction in fire 

load specified in Fig. 1 depends on the target reliability index, which in turn depends on the 

effectiveness of active fire protection systems in reducing the probability of occurrence of a 

severe fire. The proposed approach is more general and enables the reduction in fire load to be 

specified for sprinkler systems of all categories, i.e., having low, high or medium reliability, as 

well as for other active fire protection systems. 

Validity of capacity reduction and fire load factors for multiple fire scenarios 

To account for different bounding surfaces and ventilation conditions, we used three values 

of b (423 Ws0.5/m2K, 640 Ws0.5/m2K and 1160 Ws0.5/m2K) and three values of opening factors 

(0.04 m1/2, 0.08 m1/2 and 0.12 m1/2 ) to obtain nine fire scenarios which were then used to validate 

the capacity reduction and fire load factors derived above. For these nine fire scenarios, two 
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beams were designed for fire conditions using the capacity reduction and fire load factors shown 

in Fig. 1. Thus, for each βt value, we had 18 design situations, and a total of 90 design situations 

for five βt values. Reliability analysis was then performed and the computed reliability index 

values, β, for both beams are compared with the βt values in Fig. 2. 

The β values compare quite well with the βt values, indicating that the derived capacity 

reduction and fire load factors work for all design situations considered. The β values are 

conservative for βt values less than about 1.5. For βt values of less than 1.5 (see Fig. 1), the ff 

found from reliability analysis was greater than 1.0, and the nominal capacity could be increased. 

However, since ff is generally always taken to be less than or equal to 1.0 in LRFD 

specifications, we restrained the ff for fire design to also not exceed 1.0. Because of this inherent 

conservatism, the β values are higher than the βt values.  

Comparison of Fire Load Factors with those Based on ECSC Method 

The fire load factor in the ECSC study was obtained using simplified assumptions instead 

of rigorous reliability calculations, and was specified for any βt value through 
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where Vq = COV of the fire load, Φ = cumulative standard normal distribution function, and p = 

percentile used for obtaining the characteristic or nominal fire load. If the nominal value is taken 

as the 90th percentile, then p = 0.9. 

In Fig. 3, the gq obtained in this study is compared with that obtained using Eq. (16) for 

U.S. fire load statistics taking the nominal value of fire load to be the 90th percentile. gq obtained 

from the ECSC method is greater than that derived in the this study for βt values smaller than 
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about 1.5, and is almost the same for βt values greater than 1.5. As shown earlier, gq derived in 

this study yields conservative β values for βt values less than about 1.5, and hence the gq obtained 

according to the ECSC approach will yield even more conservative results. For βt values greater 

than 1.5, the beams designed as proposed herein yield the intended safety level or higher (see 

Fig.  2) because gq is used in combination with a ff  shown in Fig. 1 that is less than 1.0.  

Reliability Inherent in AISC Fire Design Methodology 

It is of interest to determine what β value is inherent in the AISC approach. The insulation 

thicknesses for six beams for the 9 different fire scenarios described earlier were determined 

using the AISC approach for two cases: (1) using ff = 0.9 and by reducing the 90th percentile of 

the fire load by 60% (for sprinklers of the highest reliability) as suggested in the Commentary to 

the AISC Specifications, and (2) using ff = 0.9 and using the 90th percentile of the fire load 

assuming that there are no reliable sprinklers in the building. Reliability analysis was then 

performed using these insulation thicknesses, and it was found that the reliability index varied 

from 0.2 to 0.5 for Case 1 and from 1.45 to 1.60 for Case 2.  

Summary and Conclusions 

A general reliability-based methodology is proposed for developing capacity reduction and 

fire load factors for the design of steel members exposed to fire. Statistics of a variety of 

parameters important for the design of steel members under fire were obtained from 

experimental data reported in the literature. Model errors associated with the thermal models 

were also characterized based on experimental data. It was found that uncertainty associated with 

the fire design parameters is much higher than that associated with room temperature design 

parameters. The capacity reduction and fire load factors correspond to a preselected target 
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reliability index that accounts for the effect of active fire protection systems (e.g., sprinklers, 

smoke and heat detectors, etc.) in reducing the probability of occurrence of a severe fire.  

To illustrate the proposed methodology, capacity reduction and fire load factors are derived 

for simply supported steel beams in U.S. office buildings exposed to fire. It is found that the fire 

load factor should vary depending on the presence of active fire protection systems. This is in 

agreement with the Commentary to the AISC Specifications, the Eurocode 1, and the ECSC 

study. It is found that the capacity reduction factor should also vary when active fire protection 

systems are present. 

For most office building compartments in the U.S. equipped with sprinklers, use of ff = 1.0 

is reasonable, and gq is likely to lie between 0.4 and 1.0. 

Current structural fire design provisions are still relatively new and evolving, with various 

remaining uncertainties and information gaps.  The methodology proposed herein is an initial 

attempt to characterize uncertainties in current fire design provisions.  It is expected that as the 

research in this field yields improved understanding of structural behavior under fire, future 

design refinements will be necessary. 
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Fig. 1.  Capacity reduction and fire load factors vs. target reliability index 
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 Fig. 2.  Comparison of computed and target reliability index values 
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Fig. 3.  Comparison of fire load factors with those obtained according to the ECSC method 
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Tables 

Table 1. Mean, COV and distributions of fire design parameters 

Variable Mean COV Distribution 

Arbitrary-point-in-time live load, Lapt 0.24*nominal variable Gamma 

Dead load, D 1.05*nominal 0.100 normal 

Fire load, qf 564 MJ/m2 0.62 Gumbel 

Ratio of floor area to total area, Af/At 0.192 0.23 lognormal 

Opening factor, Fv 1*nominal 0.05 normal 

Thermal absorptivity of  normal weight 

concrete (NWC), bNWC  
1830 Ws0.5/m2 K 0. 094 normal 

Thermal absorptivity of  lightweight 

concrete (LWC), bLWC 
640 Ws0.5/m2 K 0. 107 normal 

Thermal absorptivity of gypsum board, bg 423.5 Ws0.5/m2 K 0.09 normal 

Thermal absorptivity of a compartment 

having a 50/50 mix of NWC and gypsum 

board as boundaries, bmix 

1127 Ws0.5/m2 K 0.10 normal 

Thickness of fire protection materials, di 

(1) spray applied materials 

        (2)  gypsum board systems 

 

nominal+1/16 inch 

nominal 

 

0.20 

0.05 

 

lognormal 

normal 

Density of fire protection materials, Di 

       (1)  spray applied materials 

       (2)  gypsum board systems 

 

307 kg/m3 

745 kg/m3 

 

0.29 

0.07 

 

normal 

lognormal 

Thermal conductivity of fire protection 

materials, ki, at temperature of 400-600°C 

       (1)  spray applied materials 

       (2)  gypsum board systems 

 

 

0.187 W/m. K 

0.159 W/m. K 

 

 

0.24 

0.28 

 

 

lognormal 

lognormal 
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Note: The COV of the arbitrary-point-in-time live load depends on the tributary area (Ravindra and 

Galambos 1978) and is given as: 

0.82[1-0.00113(AT-56)]         for  56 ≤ AT ≤ 336 square feet 

0.56[1-0.0001865(AT-336)]   for   AT > 336  square feet 
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