2019

A versatile route to fabricate single atom catalysts with high chemoselectivity

Xiaohui He
Sun Yat-sen University

Qian He
Sun Yat-sen University

Yuchen Deng
Peking University

Mi Peng
Peking University

Hongyu Chen
Sun Yat-sen University

See next page for additional authors

Follow this and additional works at: https://digitalcommons.newhaven.edu/chemicalengineering-facpubs
Part of the [Chemical Engineering Commons](https://digitalcommons.newhaven.edu/chemicalengineering-facpubs) and the [Chemistry Commons](https://digitalcommons.newhaven.edu/chemicalengineering-facpubs)

Publisher Citation

Comments
This article was published in the journal *Nature Communications*. https://doi.org/10.1038/s41467-019-11619-6
A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation

Xiaohui He1,7, Qian He1,7, Yuchen Deng2,7, Mi Peng2, Hongyu Chen1, Ying Zhang1, Siyu Yao2, Mengtao Zhang2, Dequan Xiao3, Ding Ma2, Binghui Ge4,5 & Hongbing Ji1,6

Preparation of single atom catalysts (SACs) is of broad interest to materials scientists and chemists but remains a formidable challenge. Herein, we develop an efficient approach to synthesize SACs via a precursor-dilution strategy, in which metalloporphyrin (MTPP) with target metals are co-polymerized with diluents (tetraphenylporphyrin, TPP), followed by pyrolysis to N-doped porous carbon supported SACs (M1/N-C). Twenty-four different SACs, including noble metals and non-noble metals, are successfully prepared. In addition, the synthesis of a series of catalysts with different surface atom densities, bi-metallic sites, and metal aggregation states are achieved. This approach shows remarkable adjustability and generality, providing sufficient freedom to design catalysts at atomic-scale and explore the unique catalytic properties of SACs. As an example, we show that the prepared Pt1/N-C exhibits superior chemoselectivity and regioselectivity in hydrogenation. It only converts terminal alkynes to alkenes while keeping other reducible functional groups such as alkenyl, nitro group, and even internal alkyne intact.
Single atom catalysts (SACs), with maximum atom-utilization and unique electronic and geometric properties, are becoming a thriving research field because of their enhanced catalytic performance in a wide scope of industrially important reactions, e.g., selective hydrogenation of nitroarenes, alkynes and carbonyl compounds, catalytic transformation of methane, aqueous reforming of methanol, hydroformylation of olefins, olefin metathesis, and oxygen reduction. Various approaches have been utilized to prepare SACs, including the methods of impregnation/ion-exchange/co-precipitation, defect engineering, iced-photonchemisty, atomic layer deposition, galvanic replacement, high-temperature migration, and high-temperature pyrolysis. However, developing general protocols that can be used to easily synthesize a wide variety of SACs is still highly desirable. For example, by Jung et al., theoretical calculations were conducted to predict universal principles for the electro-catalytic performance of SACs bearing various metal sites. But the difficulty arises on verifying such predictions in experiments, as there are no general routes to prepare SACs with different center metals but similar supports and coordination environment. In addition, as predicted by Beller et al., the preparation of bi-/multi-metallic SACs is regarded as a next breakthrough because of their significant importance in the domino and tandem reactions, but there are few reports for their synthesis, mainly due to the huge obstacle to keep various metallic elements with obviously different physical/chemical properties coexisting in atomically dispersed states. Furthermore, comparative studies on the catalysis of different aggregation states, e.g., single atoms (SAs), nanoclusters (NCs), and nanoparticles (NPs), like the work by Zhang et al. on the Ru catalysts for CO₂ methanation, received extensive attention. But, most of these studies rely on tuning the aggregation states by changing the metal loadings, which did not conform to the single-factor-variable research method. Thus, a facile approach to regulate the aggregation states of metal species other than altering metal loading is desired.

Inspired by our previous work on the porous porphyrin polymers and the work of Feng et al. on SACs derived from metal-organic frameworks, we report here a precursor-dilution strategy to prepare N-doped porous carbon supported SACs. In brief, tetraphenylporphyrin (TPP) with chelated metal cations, acting as the metal precursor, is co-polymerized with excess amount of free TPP as the diluent. By the dilution, the mean distance between metal atoms dispersed on the as-prepared polymers is tentatively ascribed to Pt²⁺, which can be ascribed to the Pt–N and Pt–N–C contributions, respectively. It should be noted that the peak at 2.5 Å cannot be ascribed to the Pt–Pt bond (2.7 Å for Pt foil), which was further confirmed by the EXAFS fitting results of Pt₁/N–C (Supplementary Fig. 3). The fitting results were in good agreement with the original curves, and the coordination number of the Pt with surrounding N atoms was 3.4, indicating that the Pt atoms were connected with three or four N atoms. These results again corroborated the dominant presence of atomically dispersed Pt species evidenced by AC HAADF-STEM. As shown from the X-ray absorption near edge structure (XANES) spectra (Supplementary Fig. 4), the energy absorption threshold of Pt₁/N–C located between Pt foil and PtO₂, implying the presence of positively charged Pt⁴⁺ stabilized by adjacent N atoms in Pt₁/N–C. The oxidation state of Pt species was characterized by X-ray photoelectron spectroscopy (XPS, see Fig. 1g). The Pt 4f peaks located at 72.4 and 75.7 eV can be tentatively ascribed to Pt²⁺ with the presence of Pt–N bonds. The inductively coupled plasma optical emission spectrometry (ICP-OES) analysis revealed that the actual Pt loading was 0.43 wt% (Supplementary Table 2), slightly lower than the nominal loading (0.73 wt%) estimated by the molar ratio of Pt₄TPP:TPP (1:40). This may be caused by metal loss in the preparation process. The result of elemental analysis (EA) revealed that the XANES pattern resembled that for N–C and indicated the highly dispersed state of Pt species. The aggregation state of Pt species was also probed by extended X-ray absorption fine structure spectrometry (EXAFS, Fig. 1f). There were two notable peaks at 1.7 and 2.5 Å, similar to those in the spectrum of Pt₄TPP, which can be ascribed to the Pt–N and Pt–N–C contributions, respectively. The Pt⁻¹SN–N/C, Supplementary Fig. 2), resulting from the high-angle annular dark-field scanning transmission electron microscopy (STEM) image (Fig. 1c) revealed that there were no observable Pt NPs in the prepared SACs. The image taken by aberration corrected high-angle annular dark-field scanning transmission electron microscopy (AC HAADF-STEM) showed that individual Pt atoms highlighted by yellow circles in Fig. 1d were clearly visible (no bright dots can be observed in the underlying support of nitrogen-doped carbon without metal loading (i.e., N–C), Supplementary Fig. 2), result from the large difference in Z contrasts of the image for Pt and N/C. Thus, this image proved the presence of atomically dispersed Pt species.

The versatility of the precursor-dilution strategy. The precursor-dilution strategy is of significant flexibility and...
generality for SAC fabrication, as demonstrated below. All of the synthesized catalysts were characterized fully by TEM, STEM, XRD, ICP-OES, EA, and BET (see Supplementary Figs. 6–28, 30–33 and Supplementary Tables 4–30). Among them, TEM/STEM images and XRD patterns were used to preliminarily identify the aggregation states of metal species on the supports. ICP-OES was used to reveal the content of metal species, and the EA and BET measurements were used to probe catalysts’ texture.

First, we could extend the precursor-dilution strategy to fabricate a variety of SACs using MTPP with different metals (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ga, Zr, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Er, W, Ir, Au, and Bi) as the precursors and free TPP as the diluent. For most of the metals, the ratio of MTPP:TPP of 1:40 was used during the catalyst synthesis. But, there were exceptions. Some MTPPs (e.g., MnTPP and FeTPP) were found to easily leach in the polymerization process (under 80 °C and in AlCl₃). Thus, the molar ratios of MTPP:TPP were increased to obtain SACs with meaningful metal loadings (>0.05 wt%). The samples with high content of Rh or Au tended to form NPs, so the molar ratios of RhTPP:TPP and AuTPP:TPP were decreased to 1:80 and 1:160, respectively, in order to obtain atomically dispersed metal species. Details of all the synthesis were provided in Supplementary Methods. AC HAADF-STEM images (Fig. 2) showed that all of the 24 SACs featured with atomically dispersed species on the supports, which were further confirmed by the corresponding EXAFS results with the absence of metal–metal bond (Supplementary Fig. 29). Among them, SACs of Cd, Bi, and Er have never been reported before, which may underpin the exploration of intriguing applications. The EA and BET results revealed some similarity of material texture among all of the catalysts, i.e., with >420 m² g⁻¹ BET areas and ~5.0 wt% nitrogen content, due to the utilization of the similar preparation protocols.

Second, we could tune the surface Pt atom density in Pt₁/N–C by changing the precursor concentrations (i.e., the molar ratios of

Fig. 1 Preparation and structural characterization of Pt₁/N–C. a Schematic illustration of the preparation of Pt₁/N–C. The molar ratio of PtTPP:TPP is denoted as 1:n. b TEM image of Pt₁/N–C. Scale bar, 10 nm. c STEM image of Pt₁/N–C. Scale bar, 10 nm. d AC HAADF-STEM image of Pt₁/N–C. SAs were highlighted by yellow circles. Scale bar, 2 nm. e XRD pattern of Pt₁/N–C and N–C. f The k³-weighted R-space FT spectra of EXAFS for Pt₁/N–C, PtTPP, PtO₂, and Pt foil. g The XPS patterns of Pt 4f for Pt₁/N–C.
Fig. 2 AC HAADF-STEM images of M_1/N-C. $M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ga, Zr, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, W, Ir, Pt, Au, and Bi$. SAs were highlighted by yellow circles. Scale bar, 2 nm
Using different molar ratios of PtTPP:TPP (i.e., 1:320, 1:80, 1:40, and 1:20), we prepared a set of SACs with different Pt contents (0.06, 0.21, 0.43, and 0.73 wt%, respectively) and similar BET areas (~600 m² g⁻¹, see Supplementary Tables 2 and 27–29), and thus different Pt surface densities (0.002, 0.010, 0.022, and 0.034 Pt·nm⁻², respectively)³⁹,⁴⁰, in line with the trend observed by AC HAADF-STEM (Fig. 3).

Third, fabricating bi-metallic SACs (e.g., Pt₁–Sn₁/N–C) was also achieved with the same synthesis procedure of Pt₁/N–C and the precursor molar ratio of PtTPP:SnTPP:TPP (1:1:40). The N-doped porous carbon-based materials with 0.48 wt% Pt loading and 0.35 wt% Sn loading were obtained (Supplementary Table 30). This ratio of Pt loading and Sn loading (1.4:1) was in good agreement with the nominal ratio (1.6:1), based on the molar ratio of PtTPP:SnTPP (1:1) and atomic weight ratio of Pt:Sn (195.1:118.7). The AC HAADF-STEM image for Pt₁–Sn₁/N–C revealed the metal species atomically dispersed on the porous carbon supports (Fig. 4a). Corresponding element mapping analysis of Pt₁–Sn₁/N–C revealed that both Pt and Sn species were homogeneously distributed (Fig. 4b). The results of EXAFS (no Pt–Pt bond and Sn–Sn bond, Fig. 4c, d) were also indicative of the dominant presence of isolated Pt and Sn atoms deposited on the carbon matrix. These mutually authenticated results provided compelling evidence for the preparation of Pt₁–Sn₁/N–C.

Forth, we found that the pyrolysis temperature during the materials fabrication could influence the aggregation states of dispersed metal atoms. When the samples with the same molar ratio of PtTPP:TPP (1:40) were treated in different pyrolysis temperatures (i.e., 600, 700, and 800 °C), the Pt contents and BET surface areas of them were close (~0.5 wt% and ~600 m² g⁻¹, respectively, see Supplementary Tables 2 and 31–32), while the aggregation states of Pt species were changed from SAs (Pt₁/N–C) to NCs (Pt–NCs/N–C, 1.1 nm) and NPs (Pt–NPs/N–C, 6.9 nm) (Fig. 1d, Fig. 5 and Supplementary Figs. 34–35).
To our great delight, Pt/N SACs in hydrogenation reactions, which were previously reported, showed excellent chemoselectivity in the hydrogenation of 1-nitro-4-ethynylbenzene (with 99% selectivity to 1-(phenylethynyl)-4-vinylbenzene at ~20% conversion level, and 98% selectivity to 1-nitro-4-vinylbenzene, respectively (Fig. 5a, b)). In contrast, similar catalysis on Pt showed 13%, 12%, and 75% selectivities to 1-(phenylethynyl)-4-vinylbenzene, 1-ethyl-4-(phenylethynyl)benzene, and 1-styryl-4-vinylbenzene, respectively (Fig. 6c).

It is generally accepted that there are two activation pathways for semi-hydrogenation of alkyne: (i) the terminal of the −C≡C bond is activated to form a metal−alkyne σ-complex, and then the internal alkyne cannot be activated and then hydrogenated on Pt/N–C. On the contrary, Pt/N–C catalyst permits the distinction between −C≡C and −C≡C in hydrogenation mainly because of the good match between the relatively low catalytic activity of Pt SACs and high reactivity of terminal alkynes [41].

More inspiringly, our Pt/N–C showed rarely reported regioselectivity in the hydrogenation of 1-ethynyl-4-(phenylethynyl)benzene and 1-(dec-1-yn-1-yl)-3-ethynylbenzene (with −C≡CH and −C≡C), as it only transformed terminal alkyne to alkenyl and kept internal alkyne intact (99% selectivity to 1-(phenylethynyl)-4-vinylbenzene and 99% selectivity to 1,4-divinylbenzene at ~20% conversion level, and 98% selectivity to 1-(phenylethynyl)-4-vinylbenzene and 97% selectivity to 1-(dec-1-yn-1-yl)-3-vinylbenzene at ~100% conversion level, respectively (Fig. 6c, d, Supplementary Figs. 36c and 36d)). However, similar hydrogenation reactions catalyzed by Pt–NPs/N–C were not selective, i.e., both terminal and internal alkynes were hydrogenated. Therefore, hydrogenation of 1-ethynyl-4-(phenylethynyl)benzene catalyzed by Pt–NPs/N–C showed 13%, 12%, and 75% selectivities to 1-(phenylethynyl)-4-vinylbenzene, 1-ethyl-4-(phenylethynyl)benzene, and 1-styryl-4-vinylbenzene, respectively (Fig. 6c).

The chemo-/regio-selectivity of Pt SACs in hydrogenation.

After illustrating the facile synthetic routes of SACs with great versatility, we show here the unique catalytic properties of SACs (Pt/N–C, with 0.43 wt% Pt loading) compared with NPs (Pt–NPs/N–C, with Pt–NPs of 6.9 nm in diameter and 0.52 wt% Pt loading) in hydrogenation reactions, which were previously illustrated as a promising solution in practical applications of SACs [1].

To our great delight, Pt/N–C showed excellent chemoselectivity in the hydrogenation of 1-nitro-4-ethynylbenzene (with −C≡CH and −NO2) and 1-ethynyl-4-vinylbenzene (with −C≡CH and −C=CH2), as it only transformed alkyne groups to alkenyl groups and kept −NO2 and −C=CH2 intact (99% selectivity to 1-nitro-4-vinylbenzene and 99% selectivity to 1,4-divinylbenzene at ~20% conversion level, and 98% selectivity to 1-nitro-4-vinylbenzene and 97% selectivity to 1,4-divinylbenzene at ~100% conversion level, respectively, Fig. 6a, b and Supplementary Fig. 36a, b). In contrast, similar catalysis on Pt–NPs/N–C induced the formation of multiple products, resulting from the co-hydrogenation of −C≡CH and −NO2, and −C≡CH and −C≡C, respectively. The Pt/N–C catalyst permits the distinction between −C≡CH and −NO2/−C≡C in hydrogenation mainly because of the good match between the relatively low catalytic activity of Pt SACs and high reactivity of terminal alkynes [41].

More inspiringly, our Pt/N–C showed rarely reported regioselectivity in the hydrogenation of 1-ethynyl-4-(phenylethynyl)benzene and 1-(dec-1-yn-1-yl)-3-ethynylbenzene (with −C≡CH and −C≡C), as it only converted terminal alkyne to alkenyl while kept internal alkyne intact: 99% selectivity to 1-(phenylethynyl)-4-vinylbenzene and 99% selectivity to 1-(dec-1-yn-1-yl)-3-vinylbenzene at ~20% conversion level, and 98% selectivity to 1-(phenylethynyl)-4-vinylbenzene and 97% selectivity to 1-(dec-1-yn-1-yl)-3-vinylbenzene at ~100% conversion level, respectively (Fig. 6c, d, Supplementary Figs. 36c and 36d)). However, similar hydrogenation reactions catalyzed by Pt–NPs/N–C were not selective, i.e., both terminal and internal alkynes were hydrogenated. Therefore, hydrogenation of 1-ethynyl-4-(phenylethynyl)benzene catalyzed by Pt–NPs/N–C showed 13%, 12%, and 75% selectivities to 1-(phenylethynyl)-4-vinylbenzene, 1-ethyl-4-(phenylethynyl)benzene, and 1-styryl-4-vinylbenzene, respectively (Fig. 6c).

It is generally accepted that there are two activation pathways for semi-hydrogenation of alkyne: (i) the terminal of the −C≡C bond is activated to form a metal−alkyne σ-complex, and then the internal alkyne cannot be activated and then hydrogenated on Pt/N–C. The first pathway is more probable. Apparently, due to its absence of terminal hydrogen, internal alkyne cannot be activated and then hydrogenated on Pt/N–C. On the contrary, Pt–NPs/N–C with much larger diameters than that of Pt/N–C are able to interact with substrates with less steric hindrance effect [44] and then catalyze the hydrogenation of both terminal and internal alkynes. To verify our assumption, Pt/N–C, Pt–NPs/N–C (1.1 nm), and Pt–NPs/N–C (6.9 nm) were employed under the same reaction conditions (Supplementary Table 33). As expected, the catalytic activities (i.e., turnover frequency, TOF, based on the metal dispersion [13]) for the hydrogenation of internal alkynes on Pt–NPs/N–C fell between those on Pt/N–C and Pt–NPs/N–C: 1-phenyl-1-propyne (0, 132, and 2946 h⁻¹), 1-phenyl-1-pentyne (0, 93, and 2556 h⁻¹), and 5-decyne (0, 2860, and 13300 h⁻¹) on SACs, NCs, and NPs, respectively. The observation that the
activities for the hydrogenation of internal alkynes increased with the increasing size of Pt species coincided quite well with our speculation that the unique group discrimination of terminal alkynes from internal ones on Pt1/N–C can be attributed to the geometric effect (see Supplementary Fig. 37).

In addition, the stability of the Pt1/N–C catalysts in the hydrogenation of the four substrates, i.e., 1-nitro-4-ethynylbenzene, 1-ethyl-4-(phenylethynyl)benzene, 1-(dec-1-yn-1-yl)-3-ethylbenzene on Pt1/N–C and Pt–NPs/N–C. Reaction condition: substrate (0.5 mmol), catalyst (Pt:substrate = 1:1200, mol:mol), methanol (2.0 mL), H2 (1.0 MPa), 50 °C (a, b) or 80 °C (c, d). All the conversions were maintained at ~20%. TOF was calculated based on Pt dispersion (Pt1/N–C: 100%; Pt–NPs/N–C: 14.5%, estimated by particle size (6.9 nm) according to $D = 1/d_{\text{Pt}}$).

Fig. 6 Catalytic performance of Pt1/N–C and Pt–NPs/N–C. Reaction results for the hydrogenation of a 1-nitro-4-ethynylbenzene, b 1-ethyl-4-(phenylethynyl)benzene, c 1-ethyl-4-(phenylethynyl)benzene, d 1-(dec-1-yn-1-yl)-3-ethylbenzene on Pt1/N–C and Pt–NPs/N–C. Reaction condition: substrate (0.5 mmol), catalyst (Pt:substrate = 1:1200, mol:mol), methanol (2.0 mL), H2 (1.0 MPa), 50 °C (a, b) or 80 °C (c, d). All the conversions were maintained at ~20%. TOF was calculated based on Pt dispersion (Pt1/N–C: 100%; Pt–NPs/N–C: 14.5%, estimated by particle size (6.9 nm) according to $D = 1/d_{\text{Pt}}$)

above suggested that the Pt1/N–C catalysts exhibited excellent recyclability under the aforementioned reaction conditions.

Discussion
In summary, a precursor-dilution strategy was developed to synthesize a series of SACs on N-doped porous carbon supports. This strategy is facile and versatile, and thus meets the requirements of the in-depth research nowadays. The Pt1/N–C SACs prepared with this strategy showed extremely high chemo- and regioselectivity towards terminal alkynes in hydrogenation. These findings are of significant importance in broadening the application of SACs, with the implication that SACs are able to achieve superior selectivity comparable to homogeneous catalysts and enzyme catalysts, for the catalysis of complex molecules.
Methods
Catalyst preparation. Take Pt/N–C as example. Under a nitrogen atmosphere, 100 mL stainless batch tank reactor was charged with a solution of Pt(II) 0.038 mmol), TPP (1.500 mmol), and anhydrous AlCl3 (24 mmol) in 30 mL of dichloromethane (Pt(II)–TPP–AlCl3 = 1:40, mol/mol). The reaction mixture was stirred at 80 °C for 24 h and then cooled to room temperature. The as-obtained precipitate was filtered and washed with methanol, dichloromethane, tetrahydrofuran, N,N-dimethylformamide, and acetone, respectively. Subsequently, the resulted polymer was further purified by Soxhlet extractions for 24 h with methanol and dichloromethane, respectively. After dried at 80 °C in vacuum for 24 h, the polymer was placed in a tubed furnace, heated to 600 °C for 3 h at the heating rate of 5 °C min⁻¹ under flowing nitrogen gas and then naturally cooled to room temperature to obtain Pt/N–C. Detailed preparation conditions for other samples were described in Supplementary Methods.

Characterization. EA and ICP-OES were performed on Vario EL cube instrument and PerkinElmer OPTIMA 8000DV, respectively. BET surface area measurements were performed on a Micromeritic ASAP2020M analyzer at liquid nitrogen temperature. Before the measurement, samples were evacuated at 200 °C for 6 h. Specific surface areas were calculated based on the BET equation. The Pt surface density was calculated by the equation: Pt surface density = [Pt loading] × N(A) / (195.08 × [surface area]), where N(A) is the Avogadro’s number, and Pt loading and the surface area were obtained by the measurement of ICP-OES and BET, respectively. XRD patterns were obtained on a Bruker D8 Advanced diffractometer in the 2θ range 10°–80°. XPS measurements were performed on an ESCALab250 XPS system with Al Kα source and a charge neutralizer, and the binding energies were referenced to the contaminated C 1s (284.8 eV). TEM images and STEM images were obtained on FEI Tecnai G2 F30 operated at 300 kV. AC HAADF-STEM images were obtained on a JEM-ARM200F transmission electron microscopy operated at 200 kV, which incorporated with double spherical aberration correctors. X-ray absorption spectroscopy (XAS) measurements were conducted on BL14W beamline at the Shanghai Synchrotron Radiation Facility (SSRF) and 1W1B beamline at the Beijing Synchrotron Radiation Facility (BSRF). The sample of SACs were measured in fluorescence mode using Lytle detector or 32-element Ge solid state detector and the corresponding metal foils and metal oxides were used as reference samples and measured in the transmission mode. 1H and 13C nuclear magnetic resonance (NMR) spectra were obtained on Bruker Avance III 500 HD. High-resolution mass spectral (HRMS) data were obtained on Thermo Fisher Scientific Tribrid Mass Spectrometer (Orbitrap Fusion Lumos).

Catalytic performance test. Catalytic hydrogenation reactions of various substrates, including 1-phenyl-1-propane, 1-phenyl-1-pentene, 5-decine, 1-4-ethyl-4-ethylbenzene, 1-ethyl-4-vinylbenzene, 1-ethyl-4-(phenylethynyl)benzene, and 1-(dec-1-yn-1-yl)-3-ethylbenzene, were carried out in 20 mL stainless methanol, respectively. After dried at 80 °C in vacuum for 24 h, the polymer was dispersed in N,N-dimethylformamide, and acetone, respectively. Subsequently, the resulted polymer was filtered, dried, and used as reference samples and measured in the transmission mode. 1H and 13C solid state detector and the corresponding metal foils and metal oxides were used as reference samples and measured in the transmission mode. 1H and 13C nuclear magnetic resonance (NMR) spectra were obtained on Bruker Avance III 500 HD. High-resolution mass spectral (HRMS) data were obtained on Thermo Fisher Scientific Tribrid Mass Spectrometer (Orbitrap Fusion Lumos).

Data availability
The data underlying Figs. 1 and 4–6, Supplementary Figs. 3–36 and 38 are provided as a Source Data file. The other data that support the findings of this study are available from the corresponding author upon request.

Received: 24 January 2019 Accepted: 25 July 2019
Published online: 14 August 2019

References
Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21606260, 21575302, 21725301, 21821004, and 91645115), the National Science Foundation for Distinguished Young Scholars of China (No. 21425627), the NSF of Guangdong Province (2015A030313104), the Fundamental Research Funds for the Central Universities of Sun Yat-sen University (15lgic33, 16gpy15), the National Key R&D Program of China (2017YFB0602200), the Features Innovative Projects of Department of Education of Guangdong Province (No. 2016KTSCX003), and Local Innovative and Research Teams Project of Guangdong Pearl Rivers Talents Program (2017BT01C102).

Author contributions

X.H., Q.H. and Y.T. equally contributed to this work. X.H. developed the concept, designed these experiments, and analyzed experimental data. Q.H., H.C. and Y.Z. contributed to catalyst synthesis and catalytic experiments. Y.D., M.P., S.Y., M.Z. and D.M. performed the EXAFS measurements and analyzed the data. B.G. collected and analyzed the AC HAADF-STEM data. X.H., Q.H., D.X. and D.M. wrote the paper. D.M. and H.J. directed the project. All authors discussed the results and commented on the paper.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-11619-6.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Peer review information: Nature Communications thanks Abhaya Datye, and the other anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019