Supplemental Information

Characterization of Mg-based Bimetal Treatment of Insensitive Munition 2,4-dinitroanisole

Emese Hadnagy1,*, Andrew Mai2, Benjamin Smolinski3, Washington Braida2, Agamemnon Koutsospyros1

Submitted to:

Environmental Science and Pollution Research

*Corresponding Author. \textit{Email address:} EHadnagy@newhaven.edu
1Department of Civil and Environmental Engineering, University of New Haven
2Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology
3RDECOM-ARDEC

Distribution A: Approved for Public Release; Distribution is Unlimited
Table S.1 Elemental Compositions (% Mass) of Bimetal Surfaces

<table>
<thead>
<tr>
<th>Bimetal</th>
<th>O</th>
<th>Mg</th>
<th>Cu, Ni or Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg/Cu</td>
<td>Unused</td>
<td>53.1</td>
<td>34.7</td>
</tr>
<tr>
<td></td>
<td>Used</td>
<td>65.6</td>
<td>34.4</td>
</tr>
<tr>
<td>Mg/Ni</td>
<td>Unused</td>
<td>44.7</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td>Used</td>
<td>54.4</td>
<td>18.8</td>
</tr>
<tr>
<td>Mg/Zn</td>
<td>Unused</td>
<td>41.9</td>
<td>23.4</td>
</tr>
<tr>
<td></td>
<td>Used</td>
<td>53.8</td>
<td>31.5</td>
</tr>
</tbody>
</table>
Fig. S.1 Contrasted SEM image of sample surface of unused Mg/Cu to more easily observe Cu nanoparticles
Fig. S.2 Daughter spectrum of m/z 139 from ESI-MS/MS in positive mode from (a) after DNAN treatment (solvent matrix, 0.5% S/L, 10:1 Mg to Cu ratio and 2.5 hr treatment) and (b) pure DAAN solution reference
Fig. S. 3 Mass chromatograms of selected ion m/z 139 obtained from HPLC-ESI-MS of (a) pure DAAN, and (b) treated 4-ANAN sample (aqueous solution, 0.5% S/L, 10:1 Mg to Cu ratio and 1 hr treatment) where the elution of m/z 139 was identical. The slight difference in elution times (<1 min) was due to peak shifts on HPLC.
Fig. S.4 TOC, COD (mg L⁻¹) and DNAN contribution to TOC and COD in treated wastewater (0.5% S/L, 10:1 Mg to catalytic metal ratio, and 2.5 h treatment time, COD not measured for ZVMg)
Fig. S.5 Visualization of degradation of DNP (2.1 min) and DNAN (4.2 min) in the wastewater control (top chromatogram) versus wastewater treated with Mg/Cu, Mg/Ni and Mg/Zn using overlaid chromatograms after 150 minutes of treatment (wastewater matrix, 0.5% S/L, 10:1 Mg to secondary metal ratio)
Fig. S.6 EDS mapping of (a) sample region of an unused particle of Mg/Ni pictured by SEM elucidating distribution of (b) primary metal Mg to (c) oxygen, and (d) catalytic metal Ni.
Fig. S.7 EDS mapping of (a) sample region of a used particle of Mg/Ni pictured by SEM elucidating distribution of (b) primary metal Mg to (c) oxygen, and (d) catalytic metal Ni
Fig. S.8 EDS mapping of (a) sample region of an unused particle of Mg/Zn pictured by SEM elucidating distribution of (b) primary metal Mg to (c) oxygen, and (d) catalytic metal Zn.
Fig. S.9 EDS mapping of (a) sample region of a used particle of Mg/Zn pictured by SEM elucidating distribution of (b) primary metal Mg to (c) oxygen, and (d) catalytic metal Zn.
Fig. S.10 XRD patterns of Mg/Zn (a) before treatment, (b) after treatment in wastewater, (c) and after treatment in the pure aqueous phase
Fig. S.11 XRD patterns of Mg/Ni (a) before treatment, (b) after treatment in wastewater, and (c) after treatment in the pure aqueous phase