












Figure 2: Overview of the parsing procedure.

4.3. Usage

This section provides step by step instructions on how
to install and run RAPID. It is meant to ease the usage
process for potential practitioners.

Step1: Ensure that JAVA Development Kit (JDK) 1.7 or
higher is installed.

Step2: Download the RAPID JAR library, sample.java as
well as sample APK files and store them in the same
directory. By default, the code will analyze all APKs
that are in the same directory.

Step3: Compile the sample.java file in the system termi-
nal by using the following command:
javac -cp RAPIDv0.2.jar sample.java.

Step4: Execute the sample.class file with the command
java -cp .;RAPIDv0.2.jar sample (on Windows)
java -cp .:RAPIDv0.2.jar sample (on *nix).

The output of the sample file presents a general overview
of the DEX files such as the total number of strings, meth-
ods and APIs used in the application. Additionally, it
prints the first 20 strings in the string component and the
first 20 APIs with their basic data such as class and func-
tion name, address etc. Next, we chose a known JAVA
API: java.lang.System.load(..) to test for its exis-
tence. If the result is (true), all the instructions invok-
ing the API will be printed, of which the most important
data is the address(es) where the API was invoked in the
DEX file. Furthermore, the methods and the details of the
codeBlock, where the instructions executed will be listed
as well.

In total, RAPID v0.2 currently provides 27 APIs which
are listed Appendix A including a short description for
each one. These 27 APIs can be divided into four cat-
egories. The four ‘setting’-APIs allow for initializing
RAPID, e.g., setting the source directory of the APK sam-
ples. The second set of APIs contain the three ‘main ob-
ject queries’; functions of RAPID which return lists of the
three main objects of the internal data structure: String,
method and codeBlock (see Sec. 4.2). The third set of
APIs allow for specific queries against the complete data
structure. A user can search for the existence of of a string,
method or API, or acquire a list of all classes. Those APIs
are summarized in the ‘search operations’ section.

The last set ‘Workflow analyses functions’ include func-
tionality to further inspect a given DEX file.

For instance, getMethodInvoker(..) can back trace
the methods invoking a specific function as well as
getExternalFilesDirs() can obtain where the external
files are located.

The decision for these APIs was driven by existing liter-
ature; we analyzed what features / functions are required
by existing tools and implemented those. For example, the
malware detection concepts proposed by Wu et al. (2012)
and Peiravian & Zhu (2013) utilize API calls only as their
features, thus RAPID provides a method getApiList().
A detailed discussion about all of the APIs is beyond the
scope of this article. For more details, readers may want to
explore the documentation which comes with the RAPID
library.

Although these 27 APIs allow access to most of the data
stored within the data structure, there might be scenarios
where different outputs are required. In that case one may
have to implement their own logic and use the existing
‘getter-’methods of the different objects.

4.4. Use case: finding outsourced functionality

A common problem when analyzing applications is out-
sourced code; developers have the option to place code /
functionality in files other than the main DEX file. For
instance, placing API calls or other functionality exter-
nally is sometimes used for obfuscation (Apvrille & Nigam,
2014). Thus, for investigative purposes, it is of interest to
know if external files are being loaded.

External files and calls. There are two ways for an An-
droid application to load code from external files, static
and dynamic. The static method imports libraries or Java
Archive (JAR) files into the program before the APK file
is compiled. On the other hand, the dynamic procedure
calls the external files / functions during runtime. Since
static can be easily identified by checking the application’s
directory, we focus on dynamic loading.

In general, applications can load two types of external
files: *.SO files or JAR / DEX files. SO files are native
libraries following the Java Native Interface (JNI) stan-
dards which are developed by the Native Development Kit
(NDK) and are usually written in C or C++.

6



JAVA provides four different APIs to load content dy-
namically. load(..) and loadLibrary(..) from class
java.lang.System can load native libraries while the
constructor of class dalvik.system.DexClassLoader and
dalvik.system.PathClassLoader21 are utilized for load-
ing classes from DEX or JAR files.

The search process. Determining if an application calls
any code from external files requires searching for the four
APIs in the main DEX file. The procedure is generally
divided into three steps:

Step1: Search if one of the APIs is invoked in a DEX file
which can be performed by analyzing the instruction
objects (in RAPID) or examining if it is part of a
function.

Step2: Next, once the API is identified, the parameters
are analyzed to explore whether we can figure out the
library or the path to the library. For instance, if a
library is dynamically loaded, it might be the case
that the string already exists in the DEX file. If the
string cannot be found, then we continue to step 3.

Step3: Obviously our approach does not perform dy-
namic analysis, however, this procedure provides the
exact address of the invoke and thus a researcher or
practitioner can use the acquired address and set the
‘break point’ during dynamic analysis.

To simplify this process, RAPID provides two APIs.
The areExternalFilesLoaded() is a boolean function to
test weather one of those four APIs was found. The second
function name getExternalFilesDirs() returns a list of
<key,value> objects where key is the address of an invoke
and value is the actual name of the loaded lib / file. An
example of the output of this function is shown below.

176088--->

176032--->

229790--->/system/lib/libandroid.so

The output shown means that three offsets were found in
the DEX file, where only in the last case the loaded library
and its path was located. In the other two cases the value
of the parameter for the path of the .SO file could not be
obtained. This could be due to various reasons such as a
path parameter for the .SO file being split into different
string variables. However, we note that our method still
returns the address of each API used to call external files.

4.5. Validation and reliability of RAPID

This section briefly describes how validation of RAPID
was examined (Sec. 4.5.1) as well as how the reliability of
RAPID was tested (Sec. 4.5.2).

21The difference is that PathClassLoader is unable to load the
zipped DEX file.

Both tests were conducted on 11,711 APK files where
1,260 were malicious samples from the Android Malware
Genome Project22 (Zhou & Jiang, 2012) and 10,451 free
applications considered as benign samples downloaded
from Google Play. These collected samples cover most
of the categories available in the store, i.e., we cover 24/27
of the main/application categories and 17/17 of the games
category23. All samples were downloaded starting at the
end of 2015 and the last update was performed in Jan-
uary, 2016. The popularity of the applications ranged from
less than 1000 downloads to prominent applications with
millions of downloads like Facebook or YouTube. We de-
cided to use malware and benign samples in our testing as
(i) practitioners are usually tasked with malware analysis
and thus analyzing Android malware is a highly probable
use-case and (ii) we were not sure if malware and benign
samples differed significantly, which could lead to poten-
tial RAPID errors – our goal was to have diverse Android
application coverage in order generalize the validity and
reliability of our approach.

4.5.1. Validation

To validate RAPID, we performed cross-comparison to
the data in smali files generated by Baksmali, which in-
cluded three tests for the string object, method object
and codeBlock / instruction object. All three yielded the
same results verifying the correctness of our approach. The
first two tests (string and method component) were imple-
mented by an automatic comparison and was based on
11,705 samples (6 samples could not be decompiled using
Baksmali (see Sec. 4.5.2). The third test was more com-
plex and required manual analysis.

Strings. For this test, we extracted all strings with RAPID
as well as from the smali files and ran a cross-comparison.
All RAPID strings were found in the smali files and vice
versa. Note that the same string may be represented dif-
ferently in DEX and smali files, e.g., the symbol ‘’’ is
represented as ‘\’’ (additional backslash) in smali code as
it is a reserved symbol by smali. Our comparison script
considered those situations.

Classes and methods. This test focused on method-related
data which included the elements that can represent an
independent method; method name, class name, type of
return value and parameter type. For this purpose our
prototype extracted the relevant data from the smali code
using regular expressions and utilized our method compo-
nent. A cross comparison showed that both results coin-
cided.

22http://www.malgenomeproject.org (last accessed Dec. 6,
2015).

23The categories are listed at https://play.google.com/store/

apps and then click on ‘Categories’ which is found close the left upper
corner of the screen.

7

http://www.malgenomeproject.org
https://play.google.com/store/apps
https://play.google.com/store/apps


CodeBlocks and instructions. The last test was rather
complex and therefore conducted manually. The problem
is that Baksmali includes additional strings / symbols to
ease readability which are not part of the original DEX
file. To achieve this automatically, it would be necessary
to also add these strings which would then correspond to
Baksmali code. For instance, the decompiler adds .method
to indicate the start of a method. As a result, we could not
find any differences between Baksmali and RAPID within
the 20 codeBlocks that were tested manually.

4.5.2. Reliability

For this test, we compared the reliability of RAPID
again to other prominent approaches – Baksmali and
Dex2jar (due to the complexity of the test and the avail-
ability of the tools, testing all the tools is outside the scope
of our work). The test is successful if the smali code or
the JAR file are generated without errors by Baksmali or
Dex2jar, respectively. For RAPID, we required that all
four parsing levels were executed.

While RAPID successfully parsed all applications, Baks-
mali as well as Dex2jar failed to process several of them.
In detail, Baksmali failed on six applications (error mes-
sages were printed and no smali files were generated) and
Dex2jar failed on 10 cases to generate a JAR file or the
JAR file was corrupt. Surprisingly, all these applications
were benign.

The reasons of resulting in such failures varied. In order
to be successful, Baksmali and Dex2jar need valid program
logic throughout the DEX file. That means, if they parse
segments containing errors, exceptions will be thrown and
the parser stops (even though the code is never executed).
On the contrary, RAPID, as a direct extraction approach,
was still able to acquire data from the DEX files on those
samples that failed to process.

5. Experimental results

As discussed in the related work, tools either decompile
or convert the binary code and then work on the smali code
/ JAVA bytecode or implement their own parser to extract
the data. Since we cannot compare each individual parser,
we only focus on comparing RAPID with smali code and
JAVA bytecode (which are the most commonly adopted
procedures).

The total runtime T of an approach A ∈
{RAPID,Baksmali,Dex2jar} for m different queries on
a single application can be calculated as follows:

TA = Tunzip + TA
prep + m · TA

query (1)

where Tunzip is the time to unzip / decompress the APK
file, Tprep is the preparation time (decomiling or parsing)
and Tquery is the average time per query.

Since Tunzip is independent of the actual approach, we
neglect it and separate the efficiency experiment into two

0

5

10

15

20

0.0 2.5 5.0 7.5 10.0
Size of DEX file samples (MB)

Ti
m

e 
(S

)

legend

Baksmali

Dex2jar

parse_level1

parse_level2

parse_level3

parse_level4

Figure 3: Regression coefficients for decompiling and parsing for
11,695 applications.

sections. First, we analyze Tprep which compares the de-
compiling of the approaches in Sec. 5.1. In the subsequent
section, Tquery is analyzed which is the query-time.

The experiments were conducted on an machine with In-
tel (R) Core (TM) I7-4770S 3.1 GHz CPU, 16 GB memory
and Microsoft Windows 7 Professional SP1 64bit.

5.1. Decompiling vs parsing

As discussed in Sec. 4.2, RAPID has different parsing
levels and hence the runtime depends on the actual data
that is queried. For this test, we measured the runtime for
all the four different parsing levels as well as the smali de-
compilation time and the JAVA bytecode conversion time.

We utilized the sample set introduced in Sec. 4.5 but
excluded the 16 files that couldn’t be processed by Dex2jar
or Baksmali. Thus, the upcoming tests were conducted on
11,695 samples.

First, we decompressed all the APK files by running a
self-implemented JAVA program. Next, we ran Baksmali
as well as Dex2jar on the sample set and measured the ex-
ecution time using a JAVA API. With respect to RAPID,
four separate tests were conducted – one per parsing level.
Recall, the higher parsing levels include parsing lower lev-
els and thus the time will increase.

The test results are shown in Fig. 3 and clearly demon-
strate the performance advantage of RAPID compared to
its counterparts. The total runtime and the regression co-
efficients for each test are provided in Table 3. As shown,
the time for Baksmali and Dex2jar are in the same order
of magnitude where Dex2jar is insignificantly faster than
Baksmali.

5.2. Querying data

This second test focused on queries. Note, for this test
we only focused on Baksmali and RAPID as parsing the
JAVA byte structure is beyond the scope of this paper.

8



25

50

75

0.0 2.5 5.0 7.5 10.0
Size of DEX file samples (MB)

Ti
m

e 
(S

)

legend

string_search

invoke_search

API_search

Figure 4: Times for the smali code searches in seconds.

0.01

0.02

0.03

0.0 2.5 5.0 7.5 10.0
Size of DEX file samples (MB)

Ti
m

e 
(S

)

legend

string_search

API_search

invoke_search

Figure 5: Times for the RAPID searches in seconds.

0

5

10

0.0 2.5 5.0 7.5 10.0
Size of DEX file samples (MB)

Ti
m

e 
(S

)

legend

string_search

invoke_search

API_search

Figure 6: Linear regression for the smali code searches.

0.000

0.002

0.004

0.006

0.0 2.5 5.0 7.5 10.0
Size of DEX file samples (MB)

Ti
m

e 
(S

)

legend

string_search

API_search

invoke_search

Figure 7: Linear regression for the RAPID searches.

Table 3: Regression coefficients for the different Parsing Levels (PL)s
for RAPID as well as the Baksmali and Dex2jar.

Regression coefficients (s⁄MB) Time (min)

Baksmali 2.43 890.27
Dex2jar 1.91 704.34
PL 1 0.13 44.50
PL 2 0.19 64.07
PL 3 0.20 67.73
PL 4 0.26 88.05

However, it is assumed that parsing the JAVA binary files
will be similar to parsing the DEX file (both are binary)
and thus similar to RAPID.

As will be shown, the query time very much depends
on the actual use case and can be very slow for decom-
piled files. For instance, searching for a single string is
less complex than retrieving the class where a method is
called or analyzing the invokes from / to a specific func-
tion. Therefore, we conducted the test on the previously
decompressed 11,695 DEX files. For testing purposes, we
devised 3 different use cases / scenarios and measured the
time; string search, API search and invoke search.

String search. In the first scenario, we only searched for
a specific string. Real world applications of this is if an
investigator searches for a specific URL or name. In this
scenario we searched for ‘http://’.

For RAPID this meant we only had to construct the
string component which is parsing level 1 and run through
the linear list. With respect to the smali code, we have to
execute a string search on all the decompiled files.

API search. In the second scenario, we looked for
the usage of the ‘loadLibrary(..)’ API in class
java.lang.System. For smali code this is similar to a
plain string search. Note, although usually more pars-
ing is required (e.g., to analyze the parameters and return
value), in this test we focused on finding the API only.
With respect to RAPID we can utilize the method com-
ponent (parsing level 2) to solve this challenge.

Invoke search. The last scenario was the most complex
as we aimed at finding the methods that invoke a specific
function, i.e., which method / class calls a specific func-
tion. In the case of the smali code search, we looked for
the function (string search) and then analyzed if this was
part of the function and read the class name. RAPID will

9



Table 4: Regression coefficients for the different searches.

Regression coefficients (s⁄MB) Time
Baksmali
string search 1.36 467.66 min
API search 1.37 484.46 min
invoke search 1.41 481.34 min
RAPID
string search 5.138e-04 14.16 s
API search 2.760e-04 7.83 s
invoke search 6.458e-04 13.35 s

have to parse all four levels and then start from the in-
struction object by finding the opcode == invoke24; from
there it goes upwards to the codeBlock where a specific in-
struction object is contained which reveals the methodId.

Results. The results for the different searches (smali
queries and RAPID queries) are shown in Fig. 4-7. Note,
times are in seconds but the scale is different.

Fig. 4 and 5 show the exact results obtained from both
approaches. Focusing on the smali code searches shows
that they are similar in time and there are only a few
outliers (see Fig. 4). With respect to RAPID, the behavior
is quite different. While API / string search behave in
a stable manner, there are significant differences for the
invoke search which result from the fact that some APIs
are found (slower; points on upper part of the graph) and
others are not found. More precisely, in case an API is not
found in the application, the algorithm can immediately
stop. On the other hand, if the API is found, RAPID then
needs to find the invoke which requires more time.

Fig. 6 and 7 show the linear regression obtained from
both approaches which could be used to estimate times
for different sample sets.

Analyzing the linear regression in more detail reveals the
regression coefficients as summarized in Table 4. These co-
efficients allowed us to upscale the results for larger sample
sizes.

5.3. Results summary

The previous two sections addressed the processing steps
separately. In order to explore the overall performance
improvement, this section considers the initial Eq. 1 where
we will set m = 1 queries, neglect the unzip time Tunzip =
0 and use the average search times from Table 4. Thus, for
the sample set of n = 11, 695 which equals 22,889.64 MB,
the total time for Baksmali is

TBaksmali = Tunzip + TA
prep + m · TA

query

= 0 + 890.27min + 1 · 477.82min

≈ 1, 368min

24Note, this is simplified for a better understanding, the actual
opcode we are searching is invoke-kind.

and for RAPID it is

TRAPID = Tunzip + TA
prep + m · TA

query

= 0 + 88.05min + 1 · 0.20min

≈ 88min

Note that the p-values25 for all the regression coefficients
are significantly less than 0.01.

6. Limitations

There are four limitations with the current version of
RAPID.

First, as shown in Sec. 4.2, we currently do not parse the
complete DEX file and ignore some parts, e.g., sections
containing debugging or annotation information (even
though they can still be found as scattered strings in the
string component). Although our literature review re-
vealed that this data is typically not used, there might
be approaches in the future that require this information.

Second, a user needs to get accustomed to the fact that
RAPID does not provide a ‘class-object’ as a main com-
ponent but focuses on strings, methods and codeBlocks.

Users can only retrieve the class data by accessing the
class name field of the corresponding method objects.

Third, given the fact that there are currently over 1.5
million applications on market, the test sample size with
a little bit over 11,000 files may be considered small.

Finally, although we had some malware samples, we did
not experiment with obfuscation and code protection tech-
niques and how RAPID’s results might change. For exam-
ple, it may be possible that current techniques may crash
RAPID but pass the validity check of the Android virtual
machine.

7. Conclusion and future work

The problem we tried to solve is that current APK anal-
ysis approaches mostly convert the DEX file into interme-
diate code (e.g., JAVA code, smali code) which is then
analyzed or used. This procedure has a significant draw-
back when it comes to runtime efficiency as one first has
to convert everything and then analyze it.

For researchers and practitioners that might have imple-
mented their proprietary DEX parsers for certain Android
application analysis work, this means that future work will
have to reinvent the wheel since that code is often not be-
ing validated and / or shared.

Our idea was to create an easy-to-use library that can
be utilized to analyze DEX files. As a result, we presented
a new library titled RAPID – a Rapid Android Parser for

25p-value can reject the null hypothesis that the slope of the re-
gression line is equal to zero if it is less than the significance levels
which researchers always choose 0.01 / 0.05.

10



Investigating DEX files – that directly works on DEX files.
In other words, instead of converting the data, we directly
extract it.

RAPID is well-documented and comes with multiple
APIs that can be utilized by others. As our library is
open source and freely available, users can extend it. Our
experimental results show the significant performance im-
provement one can gain using RAPID. Furthermore, we
offer the possibility for searching for dynamic loading of
libraries which can then support dynamic analysis.

In the future, we will embark on three major steps.
First, we want to collect feedback from users regarding the
APIs and eventually change or improve the existing set of
APIs. Second, we will analyze our code for possible further
improvements. Third, we would like to enable RAPID to
perform more complex tasks like data-flow or call graph
analysis. These can be realized by complex queries which
RAPID can handle in a reasonable amount of time.

References

Apvrille, A., & Nigam, R. (2014). Obfuscation in android malware,
and how to fight back. Virus Bulletin, (pp. 1–10).

Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K., &
Siemens, C. (2014). Drebin: Effective and explainable detection
of android malware in your pocket. In Proceedings of the Annual
Symposium on Network and Distributed System Security (NDSS).

Castillo, C. A. et al. (2011). Android malware past, present, and
future. White Paper of McAfee Mobile Security Working Group,
.

Chen, K. Z., Johnson, N. M., D’Silva, V., Dai, S., MacNamara, K.,
Magrino, T. R., Wu, E. X., Rinard, M., & Song, D. X. (2013).
Contextual policy enforcement in android applications with per-
mission event graphs. In NDSS .

Chin, E., Felt, A. P., Greenwood, K., & Wagner, D. (2011). Analyz-
ing inter-application communication in android. In Proceedings of
the 9th international conference on Mobile systems, applications,
and services (pp. 239–252). ACM.

Desnos, A. (2013). Androguard-reverse engineering, malware and
goodware analysis of android applications. URL code. google.
com/p/androguard , .

Desnos, A., & Gueguen, G. (2011). Android: From reversing to
decompilation. Proc. of Black Hat Abu Dhabi , (pp. 77–101).

Dmitrienko, A., Liebchen, C., Rossow, C., & Sadeghi, A.-R. (2014).
On the (in) security of mobile two-factor authentication. In Fi-
nancial Cryptography and Data Security (pp. 365–383). Springer.

Drake, J. J., Lanier, Z., Mulliner, C., Fora, P. O., Ridley, S. A., &
Wicherski, G. (2014). Android Hacker’s Handbook . John Wiley
& Sons.

Elish, K. O., Shu, X., Yao, D. D., Ryder, B. G., & Jiang, X. (2015).
Profiling user-trigger dependence for android malware detection.
Computers & Security, 49 , 255–273.

Enck, W., Octeau, D., McDaniel, P., & Chaudhuri, S. (2011). A
study of android application security. In USENIX security sym-
posium (p. 2). volume 2.

Gibler, C., Crussell, J., Erickson, J., & Chen, H. (2012). Androi-
dLeaks: automatically detecting potential privacy leaks in android
applications on a large scale. Springer.

Google (2008). Android Dalvik Executable Format Page.
Google. Https://source.android.com/devices/tech/dalvik/dex-
format.html.

Hex-Rays (2005). IDA Pro. Https://www.hex-
rays.com/products/ida/.

Hoffmann, J., Ussath, M., Holz, T., & Spreitzenbarth, M. (2013).
Slicing droids: program slicing for smali code. In Proceedings of

the 28th Annual ACM Symposium on Applied Computing (pp.
1844–1851). ACM.

Lu, L., Li, Z., Wu, Z., Lee, W., & Jiang, G. (2012). Chex: statically
vetting android apps for component hijacking vulnerabilities. In
Proceedings of the 2012 ACM conference on Computer and com-
munications security (pp. 229–240). ACM.

Peiravian, N., & Zhu, X. (2013). Machine learning for android mal-
ware detection using permission and api calls. In Proceedings of
the 2013 IEEE 25th International Conference on Tools with Ar-
tificial Intelligence ICTAI ’13 (pp. 300–305). Washington, DC,
USA: IEEE Computer Society.

Seo, S.-H., Gupta, A., Sallam, A. M., Bertino, E., & Yim, K. (2014).
Detecting mobile malware threats to homeland security through
static analysis. Journal of Network and Computer Applications,
38 , 43–53.

Talha, K. A., Alper, D. I., & Aydin, C. (2015). Apk auditor:
Permission-based android malware detection system. Digital In-
vestigation, 13 , 1–14.

Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., & Wu, K.-P. (2012).
Droidmat: Android malware detection through manifest and api
calls tracing. In Information Security (Asia JCIS), 2012 Seventh
Asia Joint Conference on (pp. 62–69). IEEE.

Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., & Wang, X. S.
(2013). Appintent: Analyzing sensitive data transmission in an-
droid for privacy leakage detection. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications secu-
rity (pp. 1043–1054). ACM.

Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X., & Zou, W.
(2012). Smartdroid: an automatic system for revealing ui-based
trigger conditions in android applications. In Proceedings of the
second ACM workshop on Security and privacy in smartphones
and mobile devices (pp. 93–104). ACM.

Zheng, M., Sun, M., & Lui, J. (2013). Droid analytics: A signature
based analytic system to collect, extract, analyze and associate
android malware. In Trust, Security and Privacy in Computing
and Communications (TrustCom), 2013 12th IEEE International
Conference on (pp. 163–171). IEEE.

Zhou, W., Zhou, Y., Jiang, X., & Ning, P. (2012). Detecting
repackaged smartphone applications in third-party android mar-
ketplaces. In Proceedings of the Second ACM Conference on Data
and Application Security and Privacy CODASPY ’12 (pp. 317–
326). New York, NY, USA: ACM.

Zhou, Y., & Jiang, X. (2012). Dissecting android malware: Char-
acterization and evolution. In Security and Privacy (SP), 2012
IEEE Symposium on (pp. 95–109). IEEE.

11



Appendix A. API summary

Table A.5: RAPID APIs including brief descriptions.

Method Description

Settings

setApkDir(String apkDir) Sets the directory containing the APK / DEX files.
setSingleApk(String apkDir) To analyze a single APK / DEX file.
setUnzippedFileDir(String unzippedFileDir) Sets temp-directory for the unzipped DEX files.
getApkList() Returns a list of all APK files found in the set-directory.

Main object queries (per APK / DEX file)

getStringList() Returns a list of string objects parsed out of the current file.
getMethodList() Returns a list of method objects parsed out of the current file.
getCodeBlockList() Returns a list of codeBlock objects parsed out of the current file.

Search operations

doesStringExist(String keyword) Returns true if ‘keyword’ is found in DEX file.
doesMethodExist(MethodElement method) Returns true if a method exists in DEX file.
doesApiExist(MethodElement api) Returns true if an API call exists in a DEX file.
getApiList() Returns a list of all utilized APIs in a DEX file.
getClassList() Returns a list of class names in DEX file.
getCodeBlockById(int methodId) Returns the codeBlock of a method according to methodId.
searchStringContaines(String keyword) Search ‘keyword’ and returns a list of string objects.
searchMethod(MethodElement method) Returns a list of methodElements (e.g, useful for overloaded methods).
searchInstruction(Instruction[] targetIns) Return a list of instructions objects.
searchInstruction(String opcode, long operand) Return a list of instructions objects with same opcode and operand.
searchInsWithOpc(String opcode) Return a list of instructions objects with same opcode.
searchInsWithString(String stringContent) Return a list of instructions objects where a string is assigned.
searchInsWithString(StringElement string) Same than before but search a string object.

Workflow analyses functions

isMethodInvoked(MethodElement Method) If a method is invoked / called in DEX file.
areExternalFilesloaded() Returns true if any external files are loaded.
getMethodInvolker(MethodElement method) Returns method object list that invokes a specific method.
getExternalFilesDirs() Returns the directories where the external file(s) are located.
getInsInvokeMethod(MethodElement method) Return the instruction objects (as list) that invokes a method.
getInsInvokeMethods(MethodElement[] methods) Same than before but accepts an array of methods.
getInsLoadExternalFiles() Returns a list of instructions that loads external files.

12


