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RESEARCH ARTICLE

Heterozygosity for a Hypomorphic Polβ
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in a Mouse Model of the Fragile X-Related
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Karen Usdin1*

1 Section on Gene Structure and Disease, Laboratory of Cell and molecular Biology, National Institute of
Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of
America, 2 Department of Biochemistry, University of Cape TownMedical School, Cape Town, South Africa,
3 Departments of Therapeutic Radiology and Human Genetics, Yale University, School of Medicine, New
Haven, Connecticut, United States of America

* ku@helix.nih.gov

Abstract
The Fragile X-related disorders (FXDs) are members of the Repeat Expansion Diseases, a

group of human genetic conditions resulting from expansion of a specific tandem repeat.

The FXDs result from expansion of a CGG/CCG repeat tract in the 5’ UTR of the FMR1
gene. While expansion in a FXD mouse model is known to require some mismatch repair

(MMR) proteins, our previous work and work in mouse models of another Repeat Expansion

Disease show that early events in the base excision repair (BER) pathway play a role in the

expansion process. One model for repeat expansion proposes that a non-canonical MMR

process makes use of the nicks generated early in BER to load the MMRmachinery that

then generates expansions. However, we show here that heterozygosity for a Y265C muta-

tion in Polβ, a key polymerase in the BER pathway, is enough to significantly reduce both

the number of expansions seen in paternal gametes and the extent of somatic expansion

in some tissues of the FXD mouse. These data suggest that events in the BER pathway

downstream of the generation of nicks are also important for repeat expansion. Somewhat

surprisingly, while the number of expansions is smaller, the average size of the residual ex-

pansions is larger than that seen in WT animals. This may have interesting implications for

the mechanism by which BER generates expansions.

Author Summary

Unstable microsatellites are responsible for a number of debilitating human diseases
known as the Repeat Expansion Diseases. The unstable microsatellites, which consist of
tandem arrays of short repeat units, are prone to increase in length (expand) on intergen-
erational transmission and during the lifetime of the individual. Unlike the typical
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microsatellite instability seen in disorders like Lynch syndrome that arise from mutations
in mismatch repair (MMR) genes, expansions of these microsatellites are abolished when
MMR is lost. However, how MMR, which normally protects the genome against microsat-
ellite instability, actually promotes microsatellite expansions in these diseases is unknown.
There is evidence to suggest that a second DNA repair process, base excision repair (BER),
may be involved, but whether the nicks generated early in the BER-process are subverted
by an MMR-dependent pathway that generates expansions or whether some MMR pro-
teins contribute to a BER-based expansion process is unclear. Here we show that a muta-
tion that reduces the activity of Polβ, an essential BER enzyme, also reduces the expansion
frequency. Since Polβ is essential for key events in BER downstream of the generation of
nicks, our data favor a model in which expansions occur via a BER-dependent pathway in
which MMR participates.

Introduction
The Fragile X-related disorders (FXDs) are members of the group of diseases known as the
Repeat Expansion Diseases. This group of diseases, which includes Huntington disease (HD)
and Myotonic dystrophy type 1, are all caused by an increase in the number of repeats in an
expansion-prone tandem repeat tract [1,2]. In the case of the FXDs the repeat is CGG/CCG
and it is located in the 5’ untranslated region of the FMR1 gene (MIM� 309550; reviewed in [3]).
The FXDs include Fragile X-associated primary ovarian insufficiency and Fragile X-associated
tremor/ataxia syndrome (MIM# 300623) that occur in carriers of alleles with 54–200 repeats,
so-called premutation (PM) alleles. Fragile X syndrome (MIM# 300624), the leading heritable
cause of intellectual disability is seen in carriers of full mutation alleles (>200 repeats).

The repeats responsible for the Repeat Expansion Diseases share the ability to form unusual
secondary structures of one sort or another [1,2]. In the case of the FXDs, the repeats have the
potential to form hairpins containing a mixture of Watson-Crick and Hoogsteen base pairs, as
well as a variety of quadruplex structures [4,5,6,7,8,9,10]. Many of these sequences also form
persistent RNA:DNA hybrids [11,12,13]. Current thinking in the field is that these structures
are the substrates upon which the expansion and contraction processes act. However, the
mechanism involved is unclear.

We have previously shown that oxidative damage exacerbates expansion risk in a mouse
model of the FXDs [14]. Since Base Excision Repair (BER) is the major pathway involved in
the repair of oxidized bases, this finding is consistent with the observation that OGG1 and
NEIL1, DNA glycosylases involved in the initial recognition of oxidized bases in the BER path-
way, are important for somatic expansion in a mouse model of HD [15,16]. However, the effect
of DNA glycosylase mutations on intergenerational expansion was limited, with the loss of
OGG1 having no effect, and the loss of NEIL1 reducing the average expansion size but not the
expansion frequency. Whether this reflects mechanistic differences between germ line and so-
matic expansion or the contribution of other DNA glycosylases or other kinds of DNA damage
to expansion is unclear. Furthermore, components of the mismatch repair (MMR) pathway
have been shown to be essential for expansion in a number of different mouse and human tis-
sue culture models of the Repeat Expansion Diseases [17,18,19,20,21,22,23,24,25,26]. This has
led to the idea that BER per se does not lead to expansions but rather that the MMRmachinery
can use the nicks generated by BER DNA glycosylases to load MMR components onto the
DNA that in turn are responsible for generating expansions via a non-canonical form of
MMR [27].

Polβ and Repeat Expansions
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To examine the contribution of downstream events in the BER pathway to repeat expansion
we have examined the effect of a Y265C mutation in the gene encoding Polβ [28,29] on the ex-
pansion frequency in a mouse model of the FXDs. Polβ is the DNA polymerase central to BER.
It acts downstream of the DNA glycosylases and the apurinic/apyrimidinic endonuclease 1
(APE1) to remove the 50-terminal deoxyribose 5-phosphate resulting from APE1 digestion and
in concert with DNA ligase 3 to complete the short patch pathway of BER. If short patch BER
cannot be completed because of oxidation or reduction of the deoxyribose 5-phosphate then
Polβ acts together with Lig1, FEN1 and sometimes other polymerases like Polδ and Polε, to re-
pair the lesion using the long patch (LP) BER pathway. The Y265C mutation in PolB is a domi-
nant mutation [30] that results in a Polβ with a normal lyase activity but a ~20-fold lower
steady state catalytic rate than the WT enzyme and a lower fidelity [28].

We show here that this Polβmutation causes a decrease in the frequency of expansions seen
in the sperm of young males and decreases the extent of somatic instability in some tissues.
Thus central events in the BER pathway that occur subsequent to the generation of a nick also
play a role in repeat expansion in the FXD mouse. The distribution of residual expansions in
these animals is biased towards larger expansions and this may reflect the use of alternative
pathways for BER-mediated repeat expansion when Polβ activity is impaired.

Results

Heterozygosity for the PolBc allele causes a decrease in the number of
expanded alleles detected in sperm
To examine the role of Polβ in repeat expansion we crossed our FX PMmice to mice with a
Y265C mutation in PolB (PolBc). Since we found homozygosity for the PolBc to be embryonic
lethal in a pure C57BL/6 background and in animals backcrossed for 4 generations onto a
129S1 background, our efforts to understand the role of this protein in repeat expansion was of
necessity limited to studying its effect in heterozygous animals. We confined our analysis to an-
imals on a C57BL/6 background since there is reason to think that the expansion frequency
would be higher in these animals [31]. Since mice heterozygous for a null mutation of PolB
show significantly higher mutation rates in sperm thanWT mice [32] and PolB+/C mice devel-
op an autoimmune pathology that resembles systemic lupus erythematosus, a condition that
has been suggested to reflect a BER deficiency [33], we rationalized that an effect of the Polβ
mutation on expansion might be seen even in heterozygotes.

As the mutation rates in PolB+/- animals are only elevated significantly in sperm [32], we an-
ticipated that the effect of heterozygosity for the PolBC mutation might be limited to sperm.
We thus used small pool PCR analysis to investigate the effect of the PolBmutation on repeat
expansion in the paternal gametes. In this process a pair of nested PCR reactions is carried out
on sperm DNA that has been diluted such that on average one genome equivalent is present in
the initial PCR reaction. Typically the second PCR reaction is positive for a PM allele<50% of
the time and thus a product obtained in this way likely reflects the allele present in a single
gamete. Multiple independent reactions allow the variants present in a population of alleles to
be readily identified. This approach has been widely used for studying repeat instability in mice
(reviewed in [34]) and humans with FX PM alleles [35].

As can be seen in Fig 1, the sperm of 3-month-old PolB+/C mice had a significantly lower
number of expansions than the sperm of PolB+/+ animals (Fig 1; 42% vs 74%; p = 0.0001).
However, of the expansions that did occur, only 63% involved the addition of 1–5 repeats com-
pared to 88% of the expansions seen in the sperm of WT mice (see Fig 2 inset). This relative
deficit of small expansions is associated with a higher frequency of gametes that have gained
>10 repeats: Only 3% of the expanded gametes of WT animals had gained this number of
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repeats while 22% of the expanded gametes of PolB+/C mice had done so. In addition, PolB+/C

mice also had a 4.9-fold more gametes with alleles smaller than the parental allele (36.6% vs
7.4%, p = 0.0001). An increase in both large and small contractions was seen (Fig 2).

When small pool PCR was carried out on the sperm of 11-month-old animals, no signifi-
cant difference in the number of expansions was seen in the gametes of PolB+/+ and PolB+/C

mice (Fig 3). This was not unexpected since we had previously shown that the number of ex-
pansions in the germ line increases with paternal age [36]. Since the number of gametes that
had sustained at least one expansion in PolB+/C mice was 42% at 3 months of age, it was not
surprising that this number had risen to ~90% by 11 months of age. However, when we exam-
ined the distribution of residual expansions in these animals, we were surprised to see a relative
enrichment for larger alleles (Fig 4). In WT animals the average number of repeats added had
increased from an average of ~1 repeat in 3 month old mice to an average of ~7 repeats in the
older animals consistent with our previous reports [36]. In contrast, in PolB+/C mice, a similar
deficit of smaller alleles was seen in older mice as was seen in younger ones. In addition, the
number of larger alleles had increased such that 39% of gametes that had expanded had gained
more than 15 repeats compared to 9% in PolB+/+ animals. This data would be consistent with
the idea that while the expansion frequency is lower in PolB+/C mice than it is in PolB+/+ ani-
mals, when expansions do occur, they tend to be larger. Thus repeated rounds of expansion in
the germ line of PolB+/+ males would, for the most part, lead to an incremental increase in re-
peat number with time, while in PolB+/C mice, each expansion event, while less frequent, would
add a larger number of repeats. The distribution of allele sizes in the gametes of 11-month-old

Fig 1. The effect of heterozygosity for the PolBCmutation on the number of expansions, contractions
and unchanged alleles seen in the gametes of 3-month-old male mice. Small pool PCR was carried out
on sperm DNA isolated from two 3-month-old PolB+/+ and two 3-month-old PolB+/C male mice as described in
the Materials and Methods. These animals all had ~140 repeats. The difference between the number of
expansions, contractions and unchanged alleles within each genotype and between the two genotypes was
evaluated by Fisher’s exact test. The error bars represent the 95% confidence intervals. There were no
significant within genotype differences in the frequency of expansions, contractions or unchanged alleles.
Allele classes that are significantly different in PolB+/C mice are marked with asterisks. Expansions were
significantly reduced in PolB+/C gametes (p = 0.0001) and contractions significantly increased (p = 0.0001) by
Fisher’s exact test.

doi:10.1371/journal.pgen.1005181.g001
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Fig 2. The effect of heterozygosity for the PolBCmutation on the distribution of repeat number changes seen in the gametes of 3-month-old male
mice. The percentage of alleles with the indicated gains or losses in repeat number for PolB+/+ and PolB+/C mice was plotted. The mean gain of repeats was
3.17 (SD = 2.52) for PolB+/+ and 5.43 (SD = 4.48) for PolB+/C. This resulted in a distribution of expanded alleles that was significantly different in the two
genotypes (p = 0.0001; t test). The mean loss of repeats was 10.83 (SD = 11.05) for PolB+/+ and 19.68 (SD = 31.58) for PolB+/C. The very high standard
deviations due to the presence of some very large contractions particularly in the PolB+/C mice resulted in a distribution of contracted alleles that was not
significantly different in the two genotypes. Inset: PolB+/C mice have fewer small expansions and more large expansions than PolB+/+ mice. The error bars
represent the 95% confidence interval. Repeat size classes that are significantly different in PolB+/C mice are marked with an asterisk. The decrease in the
number of alleles with 1–5 repeats was significant at p = 0.0001, and the increase in the number of alleles with >10 repeats was significant at p = 0.005.

doi:10.1371/journal.pgen.1005181.g002

Fig 3. The effect of heterozygosity for the PolBCmutation on the number of expansions, contractions
and unchanged alleles seen in the gametes of 11-month-old male mice. Small pool PCR was carried out
on sperm DNA isolated from three 11-month-old PolB+/+ and three 11-month-old PolB+/C male mice as
described in the Materials and Methods. These animals all had ~140 repeats. The error bars represent the
95% confidence interval. The difference between the number of expansions, contractions and unchanged
alleles in the two groups of animals was evaluated by Fisher’s exact test but no significant differences
were found.

doi:10.1371/journal.pgen.1005181.g003
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PolB+/C mice showed a series of local maxima corresponding to gametes with 10, 16, 21 and 27
added repeats (indicated by the gray arrowheads in Fig 4). Taken together with the data for 3
month old fathers, the pattern would be consistent with many gametes in PolB+/C mice having
undergone multiple rounds of expansion each involving the addition of ~5–6 repeats, whereas
in PolB+/C mice most expansions only add ~1 repeat.

The number of alleles that were smaller than the original paternal allele was 8.4% in the
gametes of 11-month-old PolB+/C mice (Fig 3). This represents a significant decrease relative to
the number of such alleles seen in younger animals. In contrast the number of smaller alleles in
PolB+/+ mice did not change significantly with age. The reduction in the number of smaller al-
leles in mutant mice would be consistent with the idea that between the ages of 3 and 11
months most gametes in PolB+/C mice that had initially undergone a contraction subsequently
underwent one or more rounds of expansion.

Heterozygosity for the PolBc allele also causes a decrease in the extent
of somatic expansion in brain and tail
To evaluate the effect of the Y265C mutation on somatic expansion we compared the extent of
expansion in different tissues of 16-month-old PolB+/+ and PolB+/C male mice. The extent of
expansion in individual tissues from each group of mice was quantified using the previously
described Somatic Instability Index (SII) [37]. This index is based on the sum of the relative
heights of the individual peaks seen in high resolution electropherograms generated from the
products of amplification across the repeats. It thus can be used to quantitate the extent of ex-
pansion in a given tissue with age or relative to the same tissue in the neonate or an organ like
heart that shows very little expansion.

Fig 4. The effect of heterozygosity for the PolBCmutation on the distribution of repeat number
changes seen in the gametes of 11-month-old male mice. The percentage of alleles with the indicated
change in repeat number that were seen in the gametes of three 11-month-old mice PolB+/+ and three
11-month old PolB+/C mice. The grey arrowheads indicate the local maxima seen in the distribution of PolB+/C

alleles. The mean gain of repeats was 8.75 (SD = 5.96) for PolB+/C and 14.04 (SD = 8.70) for PolB+/C. This
resulted in a distribution of expanded alleles that was significantly different in the two genotypes (p = 0.0001; t
test). Too few contractions were seen to carry out any statistical analysis. Inset: PolB+/C mice have fewer
small expansions and more large expansions than PolB+/+ mice. The error bars represent the 95%
confidence interval. Repeat size classes that are significantly different in PolB+/C mice are marked with an
asterisk. The decrease in the number of alleles with 1–5 repeats was significant at p = 0.0001, and the
increase in the number of alleles with >15 repeats was also significant at p = 0.0001.

doi:10.1371/journal.pgen.1005181.g004
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As can be seen from Fig 5, some tissues of PolB+/C mice have an average SII that is lower
than their WT counterparts. The difference in SII was significant for testis, and the tail sample
taken at euthanasia (Tail 2). While the expansion frequency seen in sperm of 11-month-old an-
imals is not significantly different fromWT animals, the lower SII seen in the testis as a whole
may reflect the contribution of other cells of the testis. The limited number of tissues affected
by the presence of the PolBC mutation is consistent with the limited effect of PolBmutations on
the mutation rates of different tissue [32], an observation that has been interpreted to mean
that DNA repair in most tissues is not sensitive to PolBC heterozygosity. Since we know that
contractions do not occur post-natally in somatic cells [38], the decrease in the SII would be
consistent with a role for Polβ in generating somatic expansions. While it is possible that some
expansions seen in testis are derived from developing gametes, the fact that a decreased SII is
also seen in tail indicates that the effect of the Polβmutation is not confined to germ cells.
While in sperm a lower expansion frequency is offset by a larger average expansion size, this ef-
fect is not apparent in either total testis DNA or tail. It may be that the decrease in the expan-
sion frequency caused by the Y265C mutation is more marked in these cells than it is in sperm,
such that the larger jumps produced by those few alleles that do expand is not apparent. Alter-
natively, the pathway that generates these larger jumps may not occur at high enough frequen-
cy for the effect to be seen in somatic cells.

Relationship between proteins involved in BER and the propensity of
some organs to show high levels of expansion
The propensity of the CAG/CTG repeat to expand more in striatum than in the cerebellum of
a mouse model for HD has been attributed to differences in the stoichiometry of the proteins

Fig 5. PolB+/C mice show a reduced somatic instability index in testis and tail. The somatic instability
index of different organs of three 16 month old PolB+/+ and three 16 month old PolB+/C mice with ~140
repeats was determined as previously described [46]. Tail 1 and tail 2 refer to tail samples taken at 3 weeks of
age and tail samples taken at 16 months respectively. The error bars represent the standard deviations. The
significance of the differences in the SII for different genotypes was determined using Student’s t-test. The
tissues in which the SII was significantly lower in PolB+/C mice are indicated by asterisks. The SII for PolB+/C

testis was significantly lower at p = 0.001 and the SII for the PolB+/C tail 2 sample was significantly lower at
p = 0.013.

doi:10.1371/journal.pgen.1005181.g005

Polβ and Repeat Expansions
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involved in BER that are expressed in these two brain regions [39,40]. To evaluate the role of
these proteins in determining the tissue specificity of expansion in the Fragile PM mouse we
compared the expression levels of the key BER enzymes APE1, DNA ligase 1, DNA ligase 3,
FEN1, OGG1, NEIL1 and Polβ in a selection of different tissues. Expansion levels in these tis-
sues follow the trend: testis (SII = 19)> liver (SII = 15)> brain (SII = 12)> kidney (SII = 4)>
heart (SII = 0). As can be seen from Fig 6, some of the proteins tested do not show a good corre-
lation with the propensity to expand. For example, DNA ligase 3 and OGG1 show the highest
levels of expression in heart, an organ in which the repeat is stable whilst NEIL1 is expressed at
its lowest levels in brain, liver and testis, organs that show the highest levels of expansion.

Fig 6. Expression of various BER proteins in different mouse organs. Total protein was extracted from
different organs of 3 different FXDmice as described in the Materials and Methods. Since in our experience
proteins used as “normalizing controls” including β-actin and α-tubulin and GAPDH differ significantly in
different organs, we took care to analyze equal amounts of protein as assessed by the Bradford Assay. Ten
micrograms of protein from the organs of each animal were pooled and loaded onto 3–8% Tris-Acetate gels,
resolved by gel electrophoresis and subjected to Western blotting as described in the Materials and Methods.

doi:10.1371/journal.pgen.1005181.g006

Polβ and Repeat Expansions
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Furthermore, organs that have very different propensities to expand, like brain and heart, have
similar levels of Polβ. A low level of FEN1 relative to Polβ has been suggested to be an impor-
tant determinant of the predisposition of cells of the striatum to expand relative to cells of the
cerebellum in a HDmouse model [41]. However, in our mouse background this relationship
does not appear to hold, with the FEN1/Polβ ratio being lower in heart, an organ that shows no
expansion, than it is in brain. Of all the proteins tested, only APE1 and FEN1 showed a general
correlation between the level of expression and the SII of all 5 organs tested.

Discussion
Here we demonstrate that heterozygosity for the Polβ Y265C mutation causes a significant de-
crease in the number of expansions seen in the paternal germ line of young FX PMmice (Fig 1).
This decrease specifically impacted the class of repeat length changes involving the addition of
1–5 repeats, while not negatively impacting larger repeat expansions (Fig 2). In fact, in both
3-month-old and 11-month-old PolB+/Cmales the number of gametes with larger expansions
was significantly higher than it was inWT animals (Figs 2 and 4). The Y265C mutation also re-
sulted in a decrease in somatic expansion that was significant in DNA from testis and tail but
not other organs tested like liver and brain (Fig 5). The differential effect of heterozygosity for
the PolBcmutation on the extent of somatic expansion in different tissue does not necessarily
mean that different mechanisms of expansion operate in different organs. Evidence frommice
heterozygous for a null allele of PolB demonstrate that liver and brain do not show reduced lev-
els of Polβ or increased levels of mutation, while male germ cells do [32]. This may be because
some cells have regulatory mechanisms that are able to compensate for the presence of only one
fully functional allele.

While 3 month old PolB+/C mice showed evidence of more contractions than PolB+/+ mice
(Figs 1 and 2), at 11 months of age the number of alleles that were smaller than the original pa-
rental allele in the PolB+/C mice were the same as those seen in age-matched PolB+/+ mice (Figs
3 and 4). This would be consistent with the hypothesis that when BER is suboptimal, a higher
than normal fraction of alleles are processed by an alternative, currently unidentified, repair
pathway that leads to contractions, but that over time the number of alleles smaller than the
parental allele decreases as those alleles undergo subsequent rounds of expansion. These data
also suggest that the PolBCmutation does not reduce the frequency of intergenerational expan-
sions by promoting contractions, but rather that it directly impacts the efficacy of the expan-
sion process. Thus these data implicate Polβ, and thus central events in the BER pathway, in
generating expansions.

One proposed model for BER-mediated repeat expansion suggests that expansion results
from a Polβ/FEN1-dependent branch of the LP BER pathway where the weak strand displace-
ment synthesis activity of Polβ is proposed to facilitate limited strand-slippage of the repeats in
the DNA downstream of the nick [42] as illustrated in Fig 7(i). This process would be promot-
ed by hairpin formation by the repeats and would create a larger gap that would need to be
filled by Polβ. A stable hairpin would force FEN1 to capture and cleave a series of short flaps re-
sulting from breathing or realignment of the 5’ end of the hairpins. This so-called alternate
cleavage process would be essential for the creation of the ligatable nick necessary to complete
repair. The failure to fully remove the flap would result in expansions. A second model, illus-
trated in Fig 7(ii), proposes that expansion arises via the use of a second branch of the LP BER
pathway in which DNA synthesis is carried out by a combination of Polβ, Polδ and perhaps
Polε. Expansion would be triggered by strand slippage of the nascent strand during progressive
DNA synthesis by Polδ/Polε and the resultant formation of a hairpin by the repeats [43]. If the
hairpin does not have a 3’ tail, Polδ and Polε could reinitiate DNA synthesis after using their
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3’-5’ proofreading activity to remove the hairpin. However, if Polβ reinitiates synthesis the
hairpin would be retained since Polβ has no such proofreading activity. This would result in re-
peat expansion if the hairpin were not subsequently removed. Some strand displacement could
also contribute to the incorporation of additional bases.

It may be that the differential effect of the Y265C mutation on the frequency of small and
large expansions can be ascribed to the contribution of both branches of the LP BER pathway
to repeat expansion if one were to generate small expansions and the other larger ones. For ex-
ample, it may be that a Polδ/Polε-independent branch that is dependent on the weak strand-
displacement activity of Polβ to generate supernumerary bases would give rise to small expan-
sions as illustrated in Fig 7(i), while the Polβ/Polδ/Polε branch could give rise to larger expan-
sions as shown in Fig 7(ii), since Polδ/Polε could generate hairpins both by strand slippage and
strand displacement [44]. In this view, the slower polymerization rate of the Y265C mutant
would contribute to the reduction in the overall expansion frequency and to the frequency of
small expansions via the Polδ/Polε-independent branch. The slower polymerization rate may
reduce the extent of strand displacement by Polβ and give FEN1 longer to properly process the
flap bases [42]. The Y265C mutation may be less likely to negatively impact the use of the path-
way in which Polδ/Polε also participates and thus may not reduce the fraction of alleles that
sustain larger expansions.

Fig 7. Model for BER-mediated repeat expansion in the FX PMmouse.Nicks that do not get repaired by
short patch BERmay be channeled into one of two branches of the LP BER pathway. (i) The Polβ-
dependent, Polδ/Polε-independent branch. Nick processing is carried out by Polβ, a poorly processive
polymerase with weak strand-displacement activity. The resultant small flaps are processed by FEN1 to
generate a ligatable 5’ end that still contains a few additional flap bases (shown in orange). (ii) The Polβ/Polδ/
Polε-dependent branch. Since both Polδ and Polε are more processive than Polβ, more strand slippage and
more extensive strand displacement may result. Repriming of DNA synthesis on the slipped-strand using
Polβ would not remove looped out bases (shown in red) since Polβ lacks a suitable proofreading activity.
Limited strand displacement by Polβ or more extensive strand displacement by Polδ/Polε, followed by FEN1
cleavage could also result a ligatable end that still contains some flap bases (shown in orange). In either
case, repair synthesis initiated on the complementary strand would fix the supernumerary bases into the
derivative allele thus generating either a small (i) or large (ii) expansion. MMR proteins may facilitate this
process by stabilizing the hairpins. These proteins may also directly generate expansions by channelling the
hairpins formed during BER into the MMR pathway.

doi:10.1371/journal.pgen.1005181.g007
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In many mouse models of the Repeat Expansion Diseases smaller increases in repeat num-
ber are characteristic of tissue such as kidney or tail while larger increases in repeat number are
more typical of liver and some parts of the brain (see [38,45,46] for examples). It is tempting to
speculate that these differences result from the differential use of these two branches of the LP
BER pathway with the pathway choice perhaps being related to the relative levels of Polβ and
Polδ/Polε.

LP BER requires Ligase 1 and FEN1. In previous work we showed that there was no effect
of either Fen1 heterozygosity or homozygosity for a Lig1 hypomorphic mutation on the fre-
quency of repeat expansion in our mouse model [14]. However, since Fen1 and Lig1 null mice
are not viable, a role for these proteins in repeat expansion could not be definitely excluded.
The requirement of MSH2 for repeat expansion in this mouse model [19] may reflect a role of
MSH2-containing complexes in binding to and stabilizing structures formed by strand slippage
or strand displacement thus favoring the incorporation of supernumerary bases into the “re-
paired” strand. It is also possible that this binding leads to the recruitment of the rest of the
MMRmachinery to carry out BER-dependent, MMR-generated expansions.

There was not a simple relationship between the level of expression of proteins active in BER
like OGG1, NEIL1, Lig1, and Polβ in different mouse organs and the extent of somatic expan-
sion. Nor were the highest levels of expansion associated with organs that showed the lowest
FEN1/Polβ ratio as previously suggested [47]. However, a correlation was seen between the level
of expression of both APE1 and FEN1 and the amount of expansion seen in a particular tissue.
Specifically, the levels of these proteins increased in the order heart<kidney<brain<liver<testis,
a progression that parallels the increase in the SII of those organs (Figs 5 and 6). In particular,
the correlation with APE1 expression may be of significance since APE1 facilitates loading of
Polβ on the incised AP site and stimulates the strand-displacement activity of Polβ, thus facilitat-
ing the use of the LP BER pathway [41]. The correlation between APE1 expression and the pro-
pensity to expand is interesting since the abasic sites that are substrates for APE1 can be
generated independently of DNA glycosylase activity. For example, it is thought that spontane-
ous depurination, to which the G-rich FX repeats may be particularly prone [48], is one of the
most frequent promutagenic events that impacts the mammalian genome [49]. The association
between elevated APE1 levels and the likelihood of expansion may thus point to sources of DNA
damage that in addition to oxidative stress, may contribute to expansion risk.

We have also previously shown that expansion only occurs when the PM allele is located on
the active X chromosome in the FX PMmouse [50]. A similar dependence for the PM allele to
be on the active X is also suggested by data from humans [51]. However, we have also shown
that while CSB, a protein essential to the Transcription Coupled Repair pathway, contributes
to expansions it likely does so via a different mechanism [36]. Since it has been reported that
BER complexes in general [52] and LP BER complexes in particular [53] are excluded from
heterochromatic regions of the genome, the use of the LP BER pathway may account for
this dependence.

Materials and Methods

Mouse breeding and maintenance
The FX PM and the PolBc mice were generated as previously described [29,54]. Mice were
maintained in accordance with the guidelines of the NIDDK Animal Care and Use Committee
and with the Guide for the Care and Use of Laboratory Animals (NIH publication no. 85–23, re-
vised 1996). No PolBc/c mice were ever obtained from PolB+/C crosses in the C57BL/6 back-
ground or after backcrossing for more than four generations onto a 129S1/SvImJ background.
Since there is data to suggest that there would be fewer expansions in 129S1 background than a
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C57BL/6 background [31], we therefore confined our analysis to heterozygous animals in the
C57BL/6 background.

DNA isolation and genotyping
Genomic DNA from tails and different mouse organs was extracted using a Maxwell116Mouse
tail DNA purification kit (Promega, Madison, WI) according to the manufacturer’s instructions.
Sperm was isolated frommouse epididymis using standard procedures. Polβ genotyping was car-
ried out by PCR analysis of tail DNA using the forward primer Y265C-F1: 50AGAAAAGCAGCT
TCCAGCAG and reverse primer Y265C-R4: 50CAGACTTTCCAAGTGCAGGAT. PCR was
carried out at 95°C for 3 min followed by 30–40 cycles of 95°C denaturation for 30 s, 60°C an-
nealing for 15 s, and 72°C extension for 1 min. TheWT allele produced a 440 bp PCR product
and the mutant a 490 bp product [29]. The presence of the expanded CGG•CCG-repeat tract
was determined as described previously using the frax-m4 (5’-CTTGAGGCCCAGCCGCC
GTCGGCC-3’) and frax-m5 (5’-CGGGGGGCGTGCGGTAACGGCCCAA-3’) primers [55].
The primer binding sites are located immediately adjacent to the repeat and the PCR product
corresponds to the length of the repeat with 49 bases of flanking sequence. For genotyping the
PCR products were resolved by electrophoresis on a 1.5% agarose gel and stained with
ethidium bromide.

Repeat analysis
For determination of the repeat number the repeat was amplified using as described previ-
ously except that primer frax-m4 was labeled with 6-carboxyfluorescein (FAM) [55]. For de-
termination of the repeat number or profile in bulk DNA, 50–100 ng of DNA was used for
the PCR. For small pool PCR analysis from sperm, the DNA was diluted to 3pg/μl (roughly 1
haploid genome equivalent/μl). The diluted DNA was then subjected to nested PCR. The first
round of PCR was carried out using the primers frax-C (5’-gctcagctccgtttcggtttcacttccggt-3’)
and frax-F (5’-agccccgcacttccaccaccagctcctcca-3’) in a 25 μl reaction using the same PCR con-
ditions used previously [55]. One microliter of this PCR reaction was then subjected to a sec-
ond round of PCR using frax-m4 and frax-m5. Our PCR conditions allow us to amplify a
wide range of repeat lengths without significant allele dropout or bias. Under these condi-
tions <50% of samples yielded a PCR product. This is consistent with the idea that each posi-
tive PCR reaction likely represented the products of amplification of DNA from a single
sperm cell. The total number of positive PCR reactions was considered to represent the total
number of alleles analyzed. The PCR products were resolved by capillary electrophoresis on
an ABI Genetic Analyzer and the PCR profiles analyzed using GeneMapper Software 5. Al-
leles that were smaller, larger or the same size as the parental allele were counted and the pro-
portion of each allele size class calculated as a fraction of the total number of alleles analyzed.
The somatic instability index from different organs was calculated using 3 mice of each geno-
type as previously described [36]. Statistical analysis of these data were carried out using the
Graphpad Quickcalcs website (http://www.graphpad.com/quickcalcs/). The 95% confidence
intervals for the proportion of expansions, contractions and unchanged alleles were deter-
mined using the Graphpad implementation of the modified Wald method. The significance
of the differences in the frequency with which these classes were observed in PolB+/+ mice
and PolB+/C mice was determined using Fisher’s exact test. The significance of the differences
in the SII and the distribution of derivative alleles in gametes was determined using Student’s
t-test.
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Western blotting
Protein extracts were prepared from flash frozen tissues. Tissues were homogenized using a tis-
sue homogenizer (Precellys1 24,Bertin Technologies, Rockville, MD) with T-PER protein ex-
traction reagent (Pierce Biotechnology, Inc, Rockford, IL) supplemented with complete, Mini,
EDTA-free protease inhibitor cocktail (Roche Applied Science, Indianapolis, IN) and phospha-
tase inhibitor cocktail-3 (Sigma-Aldrich, St. Louis, MO) according to the supplier’s instructions.
The protein concentration was determined using a Bio-Rad protein assay kit (Bio-Rad, Hercules,
CA). Because of tissue-specific differences in the expression of proteins often used as normalizing
controls, including β-actin, tubulin and GAPDH, care was taken to load equal amounts of pro-
tein in each gel lane. Prior to loading, the protein samples were heated for 10 min at 70°C in
LDS-Sample Buffer (Life Technologies, Grand Island, NY) supplemented with 50 mMDTT. The
proteins were then resolved by electrophoresis on 3–8% NuPAGE Novex Tris-Acetate gels (Life
Technologies) and electro-blotted onto nitrocellulose membranes using NuPAGE Transfer Buff-
er (Life Technologies) supplemented with 10% methanol. Transfer was carried out at 100 V at
room temperature for 1 hour. Membranes were blocked for one hour at room temperature in
5% ECL Prime blocking agent (GE Healthcare Bio-Sciences, Pittsburgh, PA) in TBST pH 7.5
(10 mMTris-HCl, 0.15 mMNaCl and 0.01% Tween 20), then incubated overnight at 4°C with
antibodies to the following proteins APE1 (ab137708), DNA ligase 1 (ab76232), FEN1
(ab70815); NEIL1 (ab21337) and Polβ (ab26343) from Abcam (Cambridge, MA); OGG1
(15125-1-AP) from Proteintech Group (Chicago, IL) and DNA ligase 3 (611876) from BD Bio-
sciences (Sparks, MD). After incubation with the appropriate secondary antibody and the addi-
tion of the ECL Prime detection reagent (GE Healthcare Bio-Sciences), the blot was imaged
using a FluorchemM imaging system (Proteinsimple, Santa Clara, CA).
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