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ABSTRACT 

Cancer, particularly lung cancer, presents significant diagnostic and economic challenges globally. 

Timely diagnosis and cost management play pivotal roles in treatment success. A biomarker is any 

measurable molecule in blood, bodily fluids, or tissues, indicating the potential presence of an 

abnormal bodily process, condition, or disease. Biomarker testing is a laboratory test in oncology 

that is used in the selection of targeted cancer treatments and to help avoid ineffective treatments. 

Whole Genome Sequencing (WGS), is a biomarker test which while more comprehensive, comes 

at a higher cost. This study proposes an agent-based simulation model within a game-theoretic 

framework to examine the benefits of prioritizing WGS in the diagnostic process for lung cancer 

across various hospital settings. The typical diagnostic pathway for lung cancer, involving tests 

like PD-L1, ALK, EGFR, KRAS, BRAF, and ROS1, can lead to time-consuming referrals and 

potentially higher costs due to unsuccessful standard of care (SOC) tests. This thesis scrutinizes 

these pathways and evaluates the impacts of different referral scenarios on the number of 

diagnosed patients and treatment costs, drawing on a system dynamics model. Initial findings 

suggest that uniform referral strategies are not universally optimal and can result in delayed WGS 

testing results. Aiming to establish a refined strategy for each hospital type and determine the 

optimal timing for WGS, an agent-based simulation is proposed to emulate the diagnostic journey. 

The model considers costs, success rates, and diagnostic timeframes, while a game theoretic 

approach assesses each hospital's decision-making regarding WGS access. The goal is to facilitate 

the earliest and most cost-effective treatment for patients. Objectives of this thesis include 

developing an agent-based model to mirror current pathways, evaluating referral scenarios, 

formulating a game-theoretic analysis, and understanding the sensitivity of various parameters 

crucial to decision-making. The research will culminate in actionable insights for healthcare 
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providers and policymakers, specifically in enhancing WGS utilization in lung cancer diagnosis 

and treatment. 

Anticipated outcomes include a versatile model for strategizing referral practices, yielding an 

optimal approach for a given health center constellation. The broader implications of this work 

extend beyond lung cancer, offering a template for enhancing diagnostic efficiency in various 

cancers and other sectors where strategic decisions regarding shared resources are vital. The study 

stands to influence patient care positively by improving diagnostic accuracy and economic 

efficiency in healthcare delivery. 
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CHAPTER I: INTRODUCTION 

1.1. Statement of the Problem 

Cancer is one of the most fatal diseases which annually affects many individuals all around the 

world. The challenges of cancer treatment are not limited to the treatment process itself. The timely 

diagnoses of the patients and the costs involved have a crucial role in the success of the treatment 

efforts. Biomarker testing is a laboratory test in oncology that is used in the selection of targeted 

cancer treatments to help to avoid ineffective treatments. Whole Genome Sequencing (WGS) is a 

biomarker test for analyzing the entire genome which can provide more comprehensive diagnostic 

information. WGS is more expensive than other tests and not all the hospitals provide it. For lung 

cancer patients, many hospitals offer a standard of care (SOC) that encompasses certain biomarker 

tests such as PD-L1, ALK, and EGFR. If a patient cannot be diagnosed using SOC, they will be 

referred to other hospitals to be tested for other biomarker tests or will be referred for WGS testing. 

These referrals are usually based on the patient’s proximity to hospitals. Patients are referred to 

Teaching hospitals if biomarkers cannot be identified in General hospitals, and to Academic 

hospitals for WGS testing if biomarkers cannot be identified in Teaching hospitals. Unfortunately, 

patients often waste their time waiting for the results of SOC testing when they could be referred 

for WGS testing. In some cases, the cost of performing unsuccessful biomarker tests is even greater 

than the cost of WGS testing for patients [1]. Depending on their proximity to WGS centers, 

different hospitals may require distinct referral strategies. Moreover, if all hospitals choose to refer 

all their patients for WGS testing, it could potentially cause delays in receiving test results. 

Therefore, in order to establish an optimal strategy for each hospital and determine the most 

appropriate timing for conducting WGS testing, we propose utilizing an agent-based simulation to 
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simulate the diagnostic process. To enhance the hospital's choice, we will adopt a game theoretic 

framework. By allowing each hospital to develop its own diagnostic policy and approach for using 

WGS, patients can receive treatment at the earliest possible time and at the lowest possible cost. 
1.2 Methods of Research to be Utilized 

Agent-based simulation (ABS) and game theory are computational modeling techniques that can 

be used to study complex systems and interactions between different agents. In the case of cancer 

treatment, these techniques can be used to model the timing of implementation of WGS testing to 

identify the optimal strategy for different hospitals. By creating a simulation that includes different 

types of hospitals at different locations with varying levels of testing capabilities, we can model 

the interactions between hospitals and the decision-making processes involved in referring patients 

for WGS testing. In the simulation model we will consider different parameters including the cost 

of testing, success rates of tests, and the time taken to complete the diagnostic pathway. The data 

for the parameters will be derived from available online resources [2]. We will analyze the 

simulation output to derive meaningful insights for the following purposes: 

• Evaluate various referral scenarios in terms of associated costs and time. 

• Investigate the individualized timing for the implementation of WGS testing in different 

hospitals. 

• Examine the model's sensitivity to changes in various parameters and identify the most 

critical parameters for decision-making. 

1.3 Way in Which the Research Will Contribute an Original Point of View                                     

This research represents a groundbreaking contribution to the field of healthcare management and 

genomics implementation by introducing a novel perspective on enhancing diagnostic processes 
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for lung cancer patients. The innovative aspect lies in its exploration of the possibility that different 

hospitals may require distinct referral strategies based on their proximity to WGS centers. 

Additionally, the proposal to employ an agent-based simulation within a game theoretic framework 

to model and evaluate hospital-specific diagnostic policies is a pioneering approach. This study 

has the potential to improve the diagnosis and treatment of lung cancer patients by providing 

recommendations on the optimal use of WGS testing. The proposed model can also be adapted 

and applied to other types of cancer, providing a framework for optimizing the diagnostic pathway 

for different types of cancer. Furthermore, the findings of this study can be implemented in any 

type of problem in which multiple agents must make decisions about utilizing a more efficient 

shared service where time and cost are key factors in the decision-making process. In a business 

context, multiple small businesses may choose to outsource certain operations, but as more 

businesses opt to outsource, the waiting time for services may increase. 
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CHAPTER II: LITERATURE REVIEW 

2.1 Whole Genome Sequencing 

2.1.1 An Introduction to Whole Genome Sequencing 

WGS is a laboratory technique designed to examine complete genomes in their entirety [3]. In 

molecular biology and genetics, a genome encompasses the complete genetic data of an organism, 

comprising the extensive collection of genetic directives. Within every genome lies the entirety of 

instructions required for constructing the organism and facilitating its growth and maturation [4].                                                                                          

WGS is an advanced and thorough genetic analysis method that acquires comprehensive data on 

every gene and all the chromosomes in DNA [5]. WGS reads and decodes the complete genetic 

instructions (DNA) in an organism's genome. This process provides a detailed map of an 

individual's genetic information, including all the genes and non-coding regions, helping 

researchers and healthcare professionals understand genetic variations, potential health risks, 

personalized healthcare options and more.  Here's a more detailed explanation of whole genome 

sequencing:                                                                                                                

DNA Sequencing: WGS is a laboratory process that reads the order of the four DNA bases 

(adenine, thymine, cytosine, and guanine) in an individual's genome. This process provides a 

precise blueprint of the individual's genetic code.   

Comprehensive Analysis: Unlike targeted genetic tests that focus on specific genes or regions, 

WGS aims to capture every part of the genome, from coding regions that produce proteins to non-

coding regions with regulatory functions.   

Variation Detection: WGS is valuable for identifying genetic variations, including single 

nucleotide changes (SNPs), insertions, deletions, and structural variations. These variations can be 

linked to genetic diseases, susceptibility to certain conditions, and even ancestry information.   
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Clinical Applications: WGS has important clinical applications, including diagnosing genetic 

disorders, identifying potential treatment options, and understanding the genetic basis of diseases. 

It can help tailor personalized medicine approaches based on an individual's unique genetic 

makeup.   

2.1.2 Understanding WGS as a Cancer Biomarker Test 

WGS serves as a biomarker test dedicated to the analysis of the entire genome [1].                               

To explain the biomarker test, first we need to answer the question “What is biomarker?” As 

defined by the National Cancer Institute (NCI), a biomarker is a biological molecule present in 

blood, other bodily fluids, or tissues. It serves as an indicator of a regular or anomalous biological 

process, or as a signal of a specific disorder or disease, such as cancer [6].   

 

 

 

 

 

 

 

 

Figure 1: Prevalence of Driver Mutations in Lung Adenocarcinoma 

Figure 1 is inspired by an image from the website, but modifications have been made to fit the 

context of this thesis. [7] 

A biomarker test, also referred to as a biomarker assay, is a medical examination that assesses 

specific molecules, genes, proteins, or other biological markers within an individual's body. These 

 Driver mutations in 

lung adenocarcinoma 

DRIVER MUTATIONS IN LUNG ADENOMACARCINOMA 
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biomarkers offer crucial insights into one's health, the presence of a disease, its evolution, and how 

it responds to treatment. Biomarker tests play a pivotal role across a spectrum of medical 

disciplines, encompassing cancer diagnosis and staging, treatment selection, monitoring disease 

progression, cardiovascular health, infectious disease detection, tracking drug levels, genetic 

analysis, and the study of neurological disorders. In this research, my primary emphasis has been 

on the field of cancer diagnosis., where cancer biomarkers—whether biological, chemical, or 

biophysical—reside in tumor tissues or bodily fluids, providing essential information about the 

current and future behavior of cancer [8]. 

 2.1.3 Genetic Mutations in Cancer        

Cancer, fundamentally a genetic disorder, emerges from genetic mutations and alterations in 

transcriptional and epigenetic patterns. These genetic transformations offer vital insights as 

biomarkers for the early identification, staging, and in-depth molecular analysis of cancer, enabling 

tailored therapies. Well-recognized oncogenes such as EGFR, HER2, and KRAS, alongside tumor 

suppressor genes like TP53, PTEN, and PI3K, are currently employed as biomarkers to direct 

treatment strategies in various cancer types, including breast cancer, ovarian cancer, lung cancer, 

and prostate cancer, among others [9].  

There are different types of genetic mutations based on where they form.                                  

Types of genetic mutations include: 

Germline mutation: A change in a gene taking place within a parent's reproductive cells (egg or 

sperm) can influence the hereditary traits of their offspring. 

Somatic mutation: A gene alteration that takes place post-conception within the developing 

embryo, potentially leading to a future baby, is termed a somatic mutation. Such mutations 
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manifest in all cells of the developing body, except for the sperm and egg. It's important to note 

that somatic mutations cannot be inherited from parents to their children, as hereditary traits are 

exclusively transmitted through the sperm and egg.  

Numerous genetic conditions are known to exist, with some of the most prevalent including 

Alzheimer's disease, some cancers, cystic fibrosis, Down syndrome, and sickle cell disease. It's 

noteworthy that mutations play a significant role not only as a distinguishing feature of cancer but 

also in shaping the evolution of cancer itself [10]. 

2.1.4 Why Do We Use Biomarker Test?   

Cancer encompasses a diverse group of diseases marked by the accelerated proliferation of 

abnormal cells that extend beyond their typical confines. This, in turn, can lead to the dissemination 

of tumor cells to distant organs and regions of the body, a process known as metastasis. In 2018, 

cancer claimed approximately 9.6 million lives, making it the second most prevalent cause of death 

globally. Consequently, it remains a crucial and indispensable domain for research and 

investigation [10]. The early detection of cancer and the efficient management of treatment costs 

represent two key hurdles. As previously discussed, biomarker tests play a crucial role in cancer 

diagnosis. Among these, WGS stands out as a biomarker test offering more extensive diagnostic 

insights, albeit at a higher cost compared to other tests. Moreover, it allows for the simultaneous 

examination of multiple genes within a single test, thereby saving valuable time—a critical factor 

in the realm of cancer treatment [11]. WGS offers greater advantages when compared to other 

biomarker tests, albeit at a higher cost than other tests [1].  
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2.1.5 Non-Small Cell Lung Cancer   

This study centers on lung cancer, a malignancy that originates in the lungs and has the 

potential to metastasize to lymph nodes and other body organs, including the brain. 

Lung cancers are typically categorized into two primary types, namely small cell and 

non-small cells, with non-small cells encompassing subtypes such as adenocarcinoma 

and squamous cell carcinoma [12]. Patients diagnosed with stage IV non-small-cell 

lung cancer (NSCLC) must undergo a series of biomarker tests to facilitate an accurate 

diagnosis and receive the most suitable treatment. Among these tests, WGS emerges as 

a potent tool for biomarker identification. Early integration of WGS into the cancer 

treatment process streamlines the diagnostic phase, reducing the need for multiple tests 

and expediting the initiation of treatment. However, it's essential to acknowledge that 

WGS comes at a higher cost when compared to individual biomarker testing and is not 

available in all types of hospitals. Consequently, some hospitals may need to send 

samples to specialized centers, which can introduce additional delays. Notably, while 

WGS has the capacity to identify a broader spectrum of biomarkers, not all patients 

necessarily require this comprehensive testing. In many instances, standard diagnostic 

procedures suffice for biomarker identification. The challenge lies in determining the 

optimal timing for WGS testing to enable patients to start treatment at the earliest 

possible juncture and with the most cost-effective approach [1]. 

2.1.6 Cost of Whole Genome Sequencing 

In Table 1, the expenses associated with genome sequencing are presented. The overall cost for 

sequencing the genome in a cancer case amounts to £6,841, with each genome costing £3,420 [13]. 

The study took place in Brisbane, Australia, spanning 2017 and 2018, and it employed a combined 



 
 

9 
 

approach of gross and micro-costing methods to compile comprehensive resource data for a total 

of 1,433 patients. The research investigated the expenses associated with genomic sequencing for 

patients diagnosed with lung, breast, esophageal cancers, melanoma, or mesothelioma. These costs 

were categorized into seven distinct activities within the sequencing process, namely sampling, 

extraction, library preparation, sequencing, analysis, data storage, and clinical reporting. The 

findings of the study revealed that the per-person cost for whole genome sequencing ranged from 

AU$2,895 to AU$4,830, equivalent to US$2,006 to US$3,347 in 2018 [14]. 

Table 1 : Overall cost for sequencing the genome. 

 

 

2.1.7 Whole Genome Sequencing in the United States   

WGS is not widely used in the USA and is currently offered to children hospitalized with severe 

illnesses. This service is made possible through a collaboration between clinical professionals and 

laboratory genomics experts from Pediatrics, Medical Genetics, and the Yale Center for Genome 

Analysis. Presently, WGS is available to patients in the neonatal intensive care unit (NICU) and 

the pediatric intensive care unit (PICU) at Yale New Haven Children’s Hospital [15]. Since clear 

data for the US is not clearly available and the US health system is complex, the data from the 

Netherlands is used instead. 
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2.2 Agent-Based Simulation and Game Theory 

2.2.1 What is Agent-Based Simulation? 

Agent-based simulation (ABS) is an innovative approach for modeling complex systems, 

comprising autonomous, interacting "agents". This methodology facilitates the modeling of 

individual behaviors and their impact on others in ways not previously achievable. ABS is a 

relatively recent method for simulating intricate systems composed of interacting, self-governing 

"agents." These agents exhibit behaviors typically governed by simple rules and engage in 

interactions with one another, leading to the modification of their behaviors. By modeling agents 

individually, we gain insights into the diversity present in their attributes and behaviors, which 

collectively influence the overall system behavior. A bottom-up approach to modeling, agent by 

agent, and interaction by interaction, often reveals instances of self-organization, where 

unprogrammed patterns, structures, and behaviors emerge as a result of agent interactions. 

Emphasizing the modeling of agent heterogeneity and the emergence of self-organization 

distinguishes agent-based simulation from other simulation techniques such as discrete-event 

simulation and system dynamics. Agent-based modeling provides a powerful means to simulate 

social systems composed of agents that interact, influence each other, learn from experiences, and 

adapt their behaviors to better suit their environment [16].  

2.2.2 Structure of an Agent-Based Model    

A typical agent-based model consists of three key components: 

1. Agents, their characteristics, and their actions. 

2. Agent relationships and ways they interact: The structure of connections specifies how 

agents interact with each other. 

3. The environment where agents operate, in addition to interacting with other agents.[17] 
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2.2.3 Agent-Based Modeling Applications 

Agent-based modeling has found diverse applications in fields such as physical, biological, social, 

and management sciences. These applications encompass a wide spectrum, from simulating agent 

behavior in supply chains and financial markets to predicting the outcomes of marketing 

campaigns and the spread of diseases, as well as forecasting the future healthcare system needs. 

The utility of agent-based models extends from re-creating ancient civilizations that vanished 

centuries ago to devising models for entirely new markets that are yet to exist. These models come 

in various forms, ranging from simple academic models that capture the core aspects of a system 

to sophisticated decision support systems used in real-world scenarios. Minimalist models make 

use of simplified assumptions to focus on the essential system features, while decision support 

models are tailored for practical policy questions, incorporate real data, and undergo rigorous 

validation to ensure their reliability [16]. 

2.2.4 Agent-Based Simulation in Healthcare   

In the last 15 years, ABS as experienced significant growth across various fields, including hospital 

and healthcare settings. In healthcare, ABS finds valuable applications in studying patient flow, 

such as in emergency departments, and addressing operational challenges within hospitals. 

Additionally, ABS has been utilized to investigate the spread of infections within hospital 

environments, like understanding the hospital's role during influenza epidemics and analyzing the 

dynamics of nosocomial infections. Economic healthcare models that don't focus on individual 

patient scale have also been explored using ABS, although these models are not covered in this 

survey [18]. 

ABS is quickly gaining popularity in various fields. It complements other simulation methods like 

system dynamics and discrete event simulation. ABS works especially well in healthcare 
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operations management due to the complex interactions among individuals. ABS explicitly models 

these interactions, uncovering system behaviors not visible through other methods. ABS has found 

success in various aspects of healthcare operations management, including healthcare delivery, 

epidemiology, economics, and policy [19]. 

2.2.5 An Introduction to Game Theory   

Game theory delves into mathematical models that explore conflict and cooperation among 

intelligent and rational decision-makers. To grasp its core concepts, it's helpful to start by delving 

into decision theory. Decision theory centers around the predicament faced by an individual tasked 

with selecting from a range of uncertain options often referred to as "lotteries." These lotteries 

yield outcomes or "prizes" determined by chance, sometimes influenced by unknown factors, 

which we can label as the "state" or "state of the world." Game theory is all about examining 

mathematical models that deal with conflicts and collaborations involving smart, logical decision-

makers. When we say "rational," we mean that each person's choices aim to maximize their 

expected outcomes, assuming they know what the others are up to. And by "intelligent," we mean 

that everyone involved comprehends the setup and that everyone else is also a smart, rational 

decision-maker. So, when we come up with a theory describing how players should act in certain 

games, we assume that each player in the game also knows and follows this theory and its 

predictions [20]. Game theory is the science of managing conflicting interests. Conflict arises when 

two or more opposing "individuals" must make decisions that lead to various possible outcomes, 

depending on what their opponents decide. These individuals hold preferences that clash with 

those of their opponents. Game theory dissects these conflicts, outlines the choices made by 

everyone, and scrutinizes the potential results of the competitive game. 



 
 

13 
 

Game theory is a mathematical framework used for analyzing situations where multiple decision-

makers, called players, interact strategically. It aims to understand the behavior of these players 

and predict the outcomes of their interactions based on their preferences, strategies, and possible 

actions [21]. 

2.2.6 Spatial and Evolutionary Game Theory    

Spatial game theory is a branch of game theory that focuses on the spatial aspects of strategic 

interactions among players. Unlike traditional game theory, which typically assumes players 

interact uniformly, spatial game theory considers the locations and spatial distribution of players, 

often modeling interactions on grids or networks where each player interacts primarily with their 

neighbors. This approach is particularly useful for studying phenomena where the spatial 

arrangement affects outcomes, such as the spread of diseases, the evolution of cooperation, or the 

competition among firms in a market. By incorporating spatial dimensions, this theory provides 

insights into how local interactions can lead to complex global patterns and behaviors, revealing 

the importance of spatial structure in strategic decision-making processes [22]. 

Evolutionary game theory provides a framework to study the dynamics of strategic interactions in 

populations over time. Unlike traditional game theory, which often assumes rational players with 

complete knowledge and perfect foresight, evolutionary game theory focuses on the adaptation 

and evolution of strategies within a population of boundedly rational agents. One of the classic 

models used in evolutionary game theory is the repeated Prisoner's Dilemma game, which provides 

insights into the evolution of cooperation and defection strategies. The field of evolutionary game 

theory, such as the work by Weibull in 1995, has emerged by integrating game theory with the 

fundamental principles of Darwinism. This fusion aims to address the temporal aspect that the 

original game theory lacks, as it predominantly deals with equilibrium [23]. Spatial evolutionary 
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games represent a timeless and extensively examined model for exploring evolutionary dynamics 

on graphs. This model has garnered attention and investigation across a wide spectrum of 

disciplines, including biology, physics, and computer science [24]. 

2.2.6.1 The Repeated Prisoner's Dilemma Game 

The Prisoner's Dilemma is a fundamental model in game theory that demonstrates the conflict 

between individual rationality and collective welfare. In a single iteration of the game, two players 

can choose to either cooperate or defect. The payoffs are structured such that mutual cooperation 

yields a moderate reward for both players, mutual defection results in a low payoff, and if one 

player defects while the other cooperates, the defector receives the highest payoff while the 

cooperator receives the lowest. In the repeated Prisoner's Dilemma, the game is played multiple 

times, allowing players to potentially adjust their strategies based on the outcomes of previous 

rounds. This repetition enables the exploration of strategy evolution, as players may develop 

strategies based on past interactions, such as tit-for-tat, always cooperate, always defect, or more 

complex strategies. 

To illustrate the concept, consider the following payoff matrix for a single iteration of the 

Prisoner's Dilemma: 

Table 2: Payoff Matrix  

  Player B Cooperates Player B Defects 

Player A Cooperates (3, 3) (0, 5) 

Player A Defects (5, 0) (1, 1) 

                                                                                                                                                                       

In this matrix: 

• If both players cooperate, they each receive a payoff of 3. 
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• If player A cooperates while Player B defects, Player A receives a payoff of 0 while Player 

B receives 5. 

• If Player A defects while Player B cooperates, Player A receives 5 and Player B gets 0. 

• If both players defect, they each receive a payoff of 1. 

This setup highlights the dilemma: mutual cooperation leads to a better collective outcome than 

mutual defection, but individual rationality drives players towards defection, as it yields a higher 

individual payoff when the other player cooperates. 

2.2.6.2 The Repeated Prisoner's Dilemma 

 In the repeated Prisoner's Dilemma, the game is played multiple times, allowing players to 

potentially adjust their strategies based on the outcomes of previous rounds. This repetition enables 

the exploration of strategy evolution, as players may develop strategies based on past interactions, 

such as tit-for-tat, always cooperate, always defect, or more complex strategies.                  

2.2.6.3 Payoff Calculation        

In evolutionary game theory, the fitness of a strategy is determined by its payoff, which is typically 

the average reward received from interactions with other members of the population. In the 

repeated Prisoner's Dilemma, the payoff of a player is the sum of the payoffs received in each 

round, averaged over the number of rounds played. The payoffs depend not only on the player's 

own strategy but also on the strategies of others in the population. For instance, consider a 

population consisting of cooperators and defectors. If the majority of the population consists of 

defectors, the average payoff for defectors will be higher since they exploit cooperators. However, 

if the population has a significant number of cooperators, a cooperator might achieve a higher 

payoff by cooperating with another cooperator, making cooperation a viable strategy. 
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2.2.6.4 Strategy Update Mechanisms 

In evolutionary repeated games, strategy updates occur as players adjust their strategies based on 

the payoffs they receive, often modeled through imitation or learning mechanisms. One common 

mechanism is the imitate the best rule, where players adopt the strategy of the most successful 

individuals in the population. This rule assumes that players have limited information and simply 

copy the strategy of those they observe to be doing well. 

Another approach is the proportional imitation rule, where the probability of adopting a 

particular strategy is proportional to its relative success. In this mechanism, players are more likely 

to adopt strategies that yield higher payoffs, but there is also some probability of retaining or 

experimenting with less successful strategies, allowing for diversity in the population. 

Additionally, the replicator dynamics is a mathematical model used to describe how the 

proportion of strategies evolves over time. According to this model, the growth rate of a strategy's 

frequency in the population is proportional to the difference between the average payoff of the 

strategy and the population's average payoff. Strategies that perform better than average grow in 

frequency, while those that perform worse decline [25].                                                                                                                                         

2.2.7 Application of Agent-Based Simulation in this study 

In this study, ABS and game theory are applied to evaluate the referral strategies of different 

hospitals for Whole Genome Sequencing (WGS) testing in lung cancer diagnosis. The agent-based 

model will simulate interactions between hospitals, incorporating various parameters such as 

testing costs, success rates, and diagnostic timeframes to mimic real-world decision-making 

processes. Game theory will then be used to analyze these strategies, treating each hospital as a 

strategic player to determine the most cost-effective scenario for referring patients for WGS 
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testing. This integrated approach aims to develop effective diagnostic policies that minimize costs 

and maximize the number of diagnosed patients. 

2.3 Conclusion 

Chapter II provides a comprehensive review of WGS, its applications, and its significance in the 

field of cancer diagnosis. WGS offers a detailed map of an individual's genetic information, 

enabling the detection of genetic variations that can be linked to various diseases, including cancer. 

The use of WGS as a biomarker test provides crucial insights into the genetic makeup of tumors, 

facilitating personalized treatment approaches. Furthermore, the chapter discusses the practical 

aspects of implementing WGS in clinical settings, including its cost and availability. While WGS 

is not widely used in the USA due to the US complexity in insurance, its potential for 

comprehensive diagnostic insights makes it a valuable tool in advanced healthcare settings. 

Additionally, the chapter introduces ABS and game theory as innovative approaches for modeling 

complex systems in healthcare. These methods enable the simulation of interactions between 

hospitals and the assessment of referral strategies for WGS testing in lung cancer diagnosis. By 

integrating ABS and game theory, the study aims to develop effective diagnostic policies that 

minimize costs and increase the number of diagnosed patients. This literature review sets the 

foundation for the subsequent chapters, which will explore the practical application of these 

methodologies to enhance lung cancer diagnosis and treatment. 
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CHAPTER III: SIMULATING WHOLE GENOME SEQUENCING IN 

LUNG CANCER DIAGNOSIS PROCESS 

3.1 An Agent-Based Simulation  

ABS is a technique that can be used to study complex systems and interactions between different 

agents. When examining cancer treatment, this tool can help determine the optimal timing for 

implementing WGS testing in various hospitals. By creating a simulation that includes different 

types of hospitals at different locations with varying levels of testing capabilities, we can model 

the interactions between hospitals and the decision-making processes involved in referring patients 

for WGS testing. Parameters such as test success rates, cost and the time required for the diagnostic 

pathway are carefully considered in the simulation model.  

3.1.1 Building Models with Mesa                              

   

In this study, the Mesa framework was utilized to build agent-based models due to its robust and 

versatile platform for developing complex simulations. Mesa is an open-source Python library 

specifically designed for agent-based modeling. The choice of Mesa was driven by its ability to 

handle the intricate dynamics of agent interactions effectively, its strong community support, and 

its seamless integration with other scientific libraries in Python, such as NumPy and Matplotlib. 

These capabilities make Mesa an ideal tool for modeling and analyzing the intricate processes and 

interactions within the study, ensuring both accuracy and efficiency in simulation development. 

3.2 Problem description 

3.2.1 Diagnostic Pathways and Whole Genome Sequencing in Stage IV NSCLC 

Treatment 

The cancer type addressed in this thesis is lung cancer, and the setting under consideration is the 

current practice in the Netherlands [2]. Generally, upon diagnosis of stage IV NSCLC (Non-Small-

Cell Lung Cancer), patients undergo a series of biomarker tests to complete their diagnostic 
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pathway before initiating treatment. The assumption is that patients initially seek care at the nearest 

hospital, leading to different pathways based on the type of hospital visited: General, Teaching, or 

Academic. Among these, only Academic hospitals offer WGS facilities. General hospitals 

primarily conduct simpler tests targeting PD-L1, ALK, EGFR, and KRAS genes, while Teaching 

hospitals expand the testing scope to include ALK, PD-L1, KRAS, BRAF, EGFR, and ROS1.  

Academic hospitals utilize the same standard-of-care (SOC) tests as teaching hospitals but extend 

their services to include WGS testing for referred patients. Patients interact with different types of 

hospitals based on their proximity. When patients visit General or Teaching Hospitals, biomarker 

testing is conducted to diagnose their condition. If the testing is successful, indicating a positive 

diagnosis, the patient exits the system. However, if the testing is unsuccessful, suggesting a need 

for further evaluation, the patient is referred to a more specialized hospital. At Academic Hospitals, 

patients have additional options for diagnosis. Here, there's a chance to utilize SOC procedures or 

undergo WGS. The decision to refer a patient for WGS biopsy depends on various factors, 

including the willingness of both the patient and the physician. Once a WGS biopsy is performed, 

the number of tumor cells in the sample is examined. If the percentage of tumor cells is low, 

indicating a less severe condition, the patient would typically be referred back to SOC. However, 

if the biopsy is suitable for WGS analysis, it is sent to the WGS facility for further examination 

and the preparation of a detailed report. This report is then forwarded to a Multidisciplinary Tumor 

Board (MTB) for interpretation. Each pathway within this diagnostic process incurs costs and 

requires a certain amount of time. These outcomes, including cost and time to diagnosis, are 

essential metrics used to evaluate different scenarios and optimize the healthcare system's 

efficiency [1]. 
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3.2.2 Patient Referral Process Based on Proximity 

Patients who visit general, teaching, or academic hospitals on their own go to the hospitals closest 

to them. For example, patient 1 chooses to go to general hospital 1, which is the closest among the 

six general hospitals. If patient 1 is not diagnosed at general hospital 1, they are supposed to be 

referred to one of the teaching hospitals. General hospital 1 then sends the patient to the teaching 

hospital that is closest to it.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Flowchart Depicting the Diagnostic Referral Pathways for NSCLC Patients at Various Hospital Levels 

This flowchart illustrates the patient's diagnostic process. Patients visit hospitals. If a patient has 

been diagnosed at a general hospital, they will exit the system and be considered as diagnosed 

patients. If not diagnosed, they will be referred to a teaching hospital for further tests. If diagnosed 

at a teaching hospital, they will exit the system as diagnosed patients; otherwise, they will be 
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referred to an academic hospital. At the academic hospital, based on the patient and physician's 

willingness, WGS will be conducted. Once a WGS biopsy is performed, the number of tumor cells 

in the sample is examined. If the percentage of tumor cells is low, indicating a less severe 

condition, the patient would typically be referred back to SOC. 

3.3 Diagnostic Pathways 

In the typical diagnostic process, if a patient initiates their diagnostic pathway at a general hospital 

and their biomarkers remain unidentified, they are referred to a teaching hospital for further testing. 

If the patients cannot be diagnosed at teaching hospital and identification of the biomarkers fails, 

they will be referred to academic hospitals for WGS testing. Patients referred for WGS testing are 

consulted for approval before the process begins. Academic hospitals send biopsy samples to WGS 

facilities for testing, and upon completion, the results are forwarded to the MTB for interpretation. 

If WGS testing fails, patients revert to receiving SOC treatment. Throughout this process, referrals 

are determined based on geographical proximity.     

3.3.1 Suggested Referral Pathway: Direct Transfers from General to Academic 

Hospitals 

We suggested a scenario where patients are referred directly to an academic hospital from a general 

hospital. In the typical diagnostic process, patients visit a general hospital and are then referred to 

a teaching hospital. From there, they may be sent to an academic hospital. In the suggested 

scenario, the process remains largely the same, except that patients are directly referred to an 

academic hospital from the general hospital, bypassing the teaching hospital entirely. "Bypassing 

the teaching hospital entirely" means that in the suggested scenario, patients are sent directly from 

a general hospital to an academic hospital, without being referred to or treated at a teaching hospital 

in between these steps. If we consider the typical diagnostic process as the base scenario and refer 
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to the alternative as Scenario 2, both base scenario and scenario 2 have been modeled in Python 

using the Mesa package to compare the differences between them.  

3.3.2 Models’ Assumptions 

Three different types of hospitals have been considered: General Hospital, Teaching Hospital, 

Academic Hospital, and WGS Facility. Each of these is regarded as an agent, with its own 

attributes and behaviors. 

Here are the agents with their attributes: 

 

 

  

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                                                        

Figure 3: Agent’s attributes. 

These numbers which are written in figure 3 are derived from a study published in [1]. 

Mesa has two classes: Agent class and model class. The model simulates a healthcare system using 

agent-based modeling techniques. The healthcare system comprises multiple types of hospitals, 

including General Hospitals, Teaching Hospitals, and Academic Hospitals, as well as a Whole 

General 

Hospital 

Teaching 

Hospital 

Academic 

Hospital 

WGS 

Facility 

Hospital 

Average Time: 15 Days 

Cost Per Patient: 334.14  

Patient Acceptance Rate: 0.6 

Testing Success Probability: 0.58 

Average Time: 15 Days 

Cost Per Patient: 536.02  

Patient Acceptance Rate: 0.29 

Testing Success Probability: 0.6 

Average Time: 18 Days 

Cost Per Patient: 536.02 

Physician Willingness: 0.9 

Patient Acceptance Rate: 0.11 

Testing Success Probability: 0.6 

Average Time: 14 Days 

Cost Per Patient: 2925.25 

Testing Success Probability: 0.66 

WGS Capacity:  1600 biopsies per year 
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Genome Sequencing (WGS) Facility. The model aims to explore patient flow, diagnosis rates, and 

referral patterns within the healthcare system. 

Agent Types: 

1. General Hospitals: Representing primary healthcare facilities, General Hospitals have a 

specified success rate for diagnosing patients and a processing time which is equal to 0.6 

and 14 (days) respectively. They refer patients to Teaching Hospitals based on a certain 

condition. The condition requires that biomarker tests are performed for patients with a 

success rate of 0.6. The biomarker tests that are provided by General Hospital are: PD-L1, 

ALK, EGFR and KRAS. For each patient, a random number is generated; if this number 

is less than or equal to the success rate, the patient is diagnosed. Otherwise, the patient is 

referred to a teaching hospital for further biomarker tests. Additionally, since the test results 

are prepared after 15 days, the patient will be referred to a teaching hospital after this 

period. 

2. Teaching Hospitals: Teaching hospitals perform the same tests in general hospital (PD-L1, 

ALK, EGFR and KRAS) in addition to BRAF and ROS1.Teaching Hospital accept patients 

from General Hospitals and perform the mentioned biomarker tests with the success rate 

of 0.6. Like the General Hospital, a random number is generated for each patient and if the 

random number is less than or equal to 0.6, the patient is diagnosed. Otherwise, the patient 

is referred to an academic hospital. Additionally, since the test results are prepared after 15 

days, the patient will be referred to an academic hospital after this period. 

3. Academic Hospitals: Academic Hospitals receive patients from Teaching Hospitals and 

may also receive direct referrals from General Hospital in scenario 2. Like the general 
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hospital and teaching hospital, biomarker tests are performed for patients. The biomarker 

tests are the same as the teaching hospital in addition to WGS. Based on the patient and 

physician willingness for WGS, WGS is performed. The probability of patient and 

physician willingness for WGS is 0.9.  A random number is generated for each patient, if 

the random number is equal or less than the multiplication of patient and physician 

willingness, patient goes for the WGS, unless patients go for the same biomarker tests. If 

the patient goes for the biomarker tests, a random number is generated, if the random 

number id equal or less than the test success rate which is equal to 0.6 patient is diagnosed, 

unless patient is not diagnosed. 

4. WGS Facility: The Whole Genome Sequencing Facility conducts genomic analyses on 

referred patients from Academic Hospitals. A random number is generated, if the random 

number is equal or less than the 0.66 which is the enough tumor percentage for WGS, 

patient is diagnosed, otherwise patient will receive biomarker tests. 

Model Initialization: The model initializes with a predefined number of each type of hospital and 

the WGS Facility. Each hospital has attributes such as success rates, processing times, patient 

acceptance rates, and referral probabilities. Agents are placed on a grid representing the physical 

layout of the healthcare system. 

Simulation Process: 

1. Patient Flow: Patients enter the healthcare system through General Hospitals, where they 

may be diagnosed or referred to Teaching Hospitals. Subsequently, patients may be 

referred to Academic Hospitals for further evaluation or to the WGS Facility for genomic 

analysis. 
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2. Diagnosis and Referral: Hospitals success in diagnosing patients is based on random 

probabilities. Patients who are not diagnosed will be referred to other hospitals or facilities. 

3. Data Collection: The model collects data on diagnosed patients, referrals, and total patients 

for each type of hospital over time. 

4. Visualization: After simulation, the model provides visualizations of hospital positions, 

diagnosed patients over time, and total patients over time. 

3.4 Description of the Agent-Based Model Built in Mesa 

In this agent-based model, implemented using the Mesa framework, we have structured the model 

with four distinct agent classes and one overarching model class. Each class serves a specific role 

within the simulation, contributing to the overall dynamics and interactions within the system.                                                                                                                  

General Hospital Agent: 

• Represents general hospitals that patients can visit. 

• Attributes include test success probability rate, patient acceptance, test processing time and 

cost. 

• Behaviors include diagnosing patients and referring them to teaching hospitals if necessary.  
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Figure 4: Python code for general hospital agent class.       

Figure 4 shows the code for General Hospital agent class. Class General Hospital has been initiated 

with some parameters such as G_success_rate, G_initial_patient which is the number of patients 

visiting general hospital by themselves, alpha which is the proportion of sending patients to 

teaching hospital and G_cost which is the cost of biomarker tests at general hospital. Behaviors 

such as diagnosing patients and referring patients occur at step function and it will be run at every 

step. For example, at step function for the general hospital, a random number is generated for 

patients visiting general hospital, if the random number is less than the test success rate (in this 

case for general hospital is 0.58), the patient is considered as diagnosed patient, unless the patient 

will be referred to teaching hospital or academic hospital.     
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Teaching Hospital Agent: 

• Represents general hospitals that patients can visit. 

• Attributes include test success probability rate, patient acceptance, test processing time and 

cost. 

• Behaviors include receiving patients from general hospitals, diagnosing patients, and 

referring them to academic hospitals if necessary.             

 

 

 

 

 

 

 

 

      

 

Figure 5: Python code for teaching hospital agent class 

Figure 5 shows the code for Teaching Hospital Class. Class Teaching Hospital has been initiated 

with some parameters such as T_success_rate, patient_accpt which is the number of patients 

visiting teachingl hospital by themselves, and T_cost which is the cost of biomarker tests at 
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teaching hospital. Behaviors such as diagnosing patients and referring patients occur at step 

function and it will be run at every step. For example, at the begging step function for the teaching 

hospital, the sum of number of patients referred from general hospital and patients who visited the 

teaching hospital by themselves is calculated, then  a random number is generated for total patients, 

if the random number is less than the test success rate (in this case for teaching hospital is 0.6), the 

patient is considered as diagnosed patient, unless the patient will be referred to academic hospital.   

Academic Hospital Agent: 

• Represents academic hospitals that patients can visit. 

• Attributes include test success probability rate, patient acceptance, test processing time and 

cost. 

• Behaviors include receiving patients from both general and teaching hospitals for WGS 

test, diagnosing patients, and referring them to academic hospitals if necessary. 
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Figure 6: Python code for academic hospital agent class.       
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Figure 6 shows the code for Academic Hospital Agent class. Class Academic Hospital has been 

initiated with some parameters such as A_success_rate, A_patient_accpt (which is the number of 

patients visiting teachingl hospital by themselves) , dr_lh, p_lh which are docotr’s and patients 

likelihood for performing WGS test. s, and A_cost which is the cost of biomarker tests at academic 

hospitals. Behaviors such as diagnosing patients and referring patients occur at step function and 

it will be run at every step. For example, at the begging step function for the academic hospital, 

the sum of number of patients referred from general hospital and teaching hospital and patients 

who visited the academic hospital by themselves is calculated, then  a random number is generated 

for total patients, if the random number is less than the test success rate (in this case for teaching 

hospital is 0.6), the patient is considered as diagnosed patient, unless the patient will be referred to 

WGS facility for WGS test.     

WGS Facility Agent:           

• Represents WGS facility that patients will be referred to. 

• Attributes include test success probability rate, capacity limitation, test processing time and 

cost. 

• Behaviors include receiving patients from academic hospital for WGS test, diagnosing 

patients, and referring back them to academic hospitals if necessary.        
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Figure 7: Python code for academic hospital agent class.       

Figure 7 shows the code WGS Facility Agent class. Class WGS Facility has been initiated with 

some parameters such as percentage (which is the tumor percentage), WGS_cost, and capacity 

which is the capacity limitation for WGS facility. Behaviors such as diagnosing patients and 

referring patients occur at step function and it will be run at every step. For example, at the begging 

step function for the WGS facility, the sum of number of patients referred from academic hospital 

and patients who are in the queue (due to the capacity limitation a queue will be produced) is 
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calculated, then  a random number is generated for total patients, if the random number is less than 

the percentage (in this case wgs facility is 0.66), the patient is considered as diagnosed patient, 

unless the patient will be referred back  to academic hospital for SOC.     

Model Class  

The Hospital Model class is a simulation model for different types of hospitals, created using the 

Mesa framework. Some values and referral logic, such as finding the closest distance between 

hospitals or the closest distance for patients to the hospitals, have been initialized in the model 

class.: 

Figure 8: General Hospital agent initialization 

For example, in Figure 8, we have initialized the General Hospital agents with their values. The 

code for Teaching Hospitals, Academic Hospitals, and WGS facilities is the same as for General 

Hospitals, with different values and parameters. However, the structure of the code and the logic 

is the same. 
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Figure 9: Code for finding the closest distance for general hospital from teaching and academic hospitals. 

In figure 9, we have defined how to find the closest teaching and academic hospitals for general 

hospitals. 

 

 

Figure 10: Code for referral logic from general hospital to teaching or academic hospital. 

In figure 10, the referral logic for general hospital has been defined. 

 

3.5 Results 

3.5.1 Base Scenario Result 

In the base scenario, a patient who is not diagnosed at the general hospital will be referred to a 

teaching hospital. Results of the base scenario is as below:                            
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For both scenarios, the simulation model has been run for various types of hospitals, including 6 

general hospitals, 3 teaching hospitals, 1 academic hospital, and 1 WGS facility, over 200-time 

steps. Each time step represents one day and simulates the visits of 2 patients to general hospitals, 

and 1 patient each to teaching and academic hospitals. The total annual patients are 5313, with 

60% visiting general hospitals, 29% visiting teaching hospitals, and 11% visiting academic 

hospitals [1]. 

To calculate the total cost for general hospitals, we multiply the number of patients who visit the 

general hospital by $334.14, which is the cost of performing a biomarker test at a general hospital. 

For example, if there are 2 patients at the general hospital, the total cost would be 2 multiplied by 

334.14.  

𝐶𝑖 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙          𝑖 ∈ 𝐼  

𝑃𝑖 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟 𝑇𝑒𝑠𝑡𝑠 𝑝𝑒𝑟 𝑃𝑎𝑡𝑖𝑒𝑛𝑡    𝑖 ∈ 𝐼 

𝑁𝑖 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑎𝑡 𝑒𝑎𝑐ℎ ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙             𝑖 ∈ 𝐼 

𝐶𝑖 =  𝑃𝑖𝑁𝑖                         

Example:                                                                                                                                     

Number of total patients at the general hospital (𝑁𝑖): 2                                                                        

Cost per patient (𝑃𝑖): 334.14                                                                                                                  

Total cost (𝐶𝑖) = 2 * 334.13 = 668.28 
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To calculate the total cost for teaching hospitals, we multiply the number of patients who visit the 

teaching hospital, plus the number of patients who are referred to the teaching hospital, by $536.02.  

To calculate the total cost for an academic hospital, we base the calculation on whether patients 

undergo SOC or WGS. If patients undergo SOC, we multiply the number of patients by $536.02. 

If patients undergo WGS, we multiply the number of patients by $2925.25; however, this cost will 

be considered the total cost for the WGS facility, not for the academic hospital. 

Figure 11: Map of hospital positions.                                                                                                                                              

Figure 11 displays the randomly generated locations of various hospitals. The red markers indicate 

general hospitals, located at six different sites. The green markers represent teaching hospitals, 

located at three distinct locations. The blue marker shows the location of an academic hospital, 

while the yellow marker represents the WGS facility, each at a single location.                                                     

Figure 12: Trends in patients diagnosed at different types of hospitals. 
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Figure 12 presents the cumulative number of diagnosed patients at different types of hospitals over 

a span of 200-time steps. The time step unit in this simulation is considered to be a day. This means 

that 200-time steps are equal to 200 days. The red line tracks diagnosed patients at general 

hospitals. This line shows an almost linear increase in the number of diagnosed patients because 

patient’s arrival has a uniform distribution and number of diagnosed patients reaching up to 

approximately 1400 by the 200th time step. The green line tracks diagnosed patients at teaching 

hospitals. This line also demonstrates a linear increase, though at a slower rate compared to the 

general hospitals because there are fewer patients in teaching hospitals. The line culminates at 

around 900 diagnosed patients. The yellow line indicates the cumulative diagnoses at the WGS 

facility and reaching nearly 700 patients by the end of the observed period. The number of 

diagnosed patients at the WGS facility is near zero at the beginning of the period because when 

patients visit academic hospitals or are referred there from teaching hospitals, it takes 14 days to 

process the WGS test results, in addition to the waiting time for results at general or teaching 

hospitals. Therefore, in the initial steps of the simulation, there are no patients at the WGS facility. 

The blue line represents the academic hospital, which has the lowest number of diagnosed patients 

the four, ending with around 200 diagnosed patients by the 200th time step. 

                                                                                                          

Figure 13: Trends in number of diagnosed patients for all hospitals.                                                                          
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Figure 13 illustrates the cumulative total number of diagnosed patients over a series of time steps. 

The graph displays a single black line showing a continuous and steady increase in the total number 

of diagnosed patients over time. The reaches approximately 3200 diagnosed patients by the 200th 

time step. The total number of diagnosed patients in the base scenario is 3229. 

                                                                                               

Figure 14: Comparative analysis of hospital costs.                                                                     

Figure 14 presents the cumulative costs for four distinct healthcare facilities over a sequence of 

200-time steps. The red line represents the general hospital, the green line is for the teaching 

hospital, the blue line shows the academic hospital, and the yellow line corresponds to the WGS 

facility. The lines track the total cost associated with each facility, with the WGS facility seeing a 

notable surge in costs as time progresses. The WGS facility has the highest cumulative cost, 

increasing steeply and significantly over time, indicating the high expenses involved in whole 

genome sequencing. WGS test cost is 2925.25 euros per patient while the biomarker tests provided 

by general, teaching, and academic hospital is 334.14 euros, 536.02 euros and 536.02 euros. 
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Figure 15: Trends in total cost for all hospitals in base scenario 

Figure 15 shows the cumulative cost for all hospital types combined over 200 time steps.  

3.5.1.1 Result with WGS Capacity in base scenario  

The base scenario model has been run again with WGS capacity. WGS capacity is 1600 biopsies 

per year [1]. In this model (base scenario), there is one WGS facility and the capacity has been 

considered 4 per day. 

(a)                                                                                (b) 

 

 

 

 

 

                                                                                                                                                                                            

Figure 16: Trends in number of diagnosed patients for all hospitals without WGS capacity (a) and with WGS 

capacity (b) 

Figures 16 depict the cumulative number of diagnosed patients across all hospitals over 200-time 

steps. The key distinction between these two figures lies in the WGS capacity. Figure 16 (a) is 

without WGS capacity, and figure 16 (b) is with WGS capacity. When the capacity of the WGS 

facility is accounted for, there is a reduction in the total number of diagnosed patients. The number 
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of total diagnosed patients with WGS capacity is equal to 2859 patients over 200-time steps. The 

number of total diagnosed patients without WGS capacity is equal to 3229 patients over 200-time 

steps.  

    (a)                                                                                  (b)                                                               

                                                                                 

Figure 17:  Trends in cumulative cost for all hospitals without WGS capacity (a) and with WGS capacity (b)   

Figures 17 illustrates the cumulative total cost for all hospitals with and without WGS capacity. 

Comparing these two graphs reveals that the total cost is higher when WGS capacity is not 

implemented, figure 17 (a). Specifically, the total cost with WGS capacity is 4,356,415.97, while 

the total cost without WGS capacity is 5,200,000. 

3.5.2 Scenario 2 Result 

In scenario 2, if a patient is not diagnosed at the general hospital, they will be referred directly to 

the academic hospital. Patients are no longer referred to the teaching hospital from the general 

hospital. Like the base scenario, the simulation model has been run for various types of hospitals 

including 6 general hospitals, 3 teaching hospitals, 1 academic hospital and 1 WGS facility running 

through 200 steps. Each step simulates the visits of 2 patients to general hospitals, and 1 patient 

each to teaching and academic hospitals. The total annual patients are 5313 which 60% visit 

general hospital, 29% visit teaching hospital and 11% visit academic hospital.[1]   
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(a)                                                                         (b) 

 

 

 

 

 

 

Figure 18: Cumulative diagnosed patients for all hospitals - scenario 2 (a) and base scenario (b) 

Figure 18 illustrates the cumulative total number of diagnosed patients over a series of time steps. 

Figure 18 (a) shows the cumulative diagnosed patients in scenario 2 which the number of 

diagnosed patients is more than the base scenario. The total number of diagnosed patients in 

scenario 2 is 3356 which is more than the base scenario which is equal to 3229.  By analyzing this 

graph, we realized that when capacity is not applied for WGS facility, it is better to send patients 

to academic hospital directly from general hospital.                                     

(a)                                                                                                (b)     

Figure 19:Trends in cumulative cost for all hospitals - scenario 2 (a) and base scenario (b)                                                                   

Figure 19 shows the cumulative cost for all hospital types combined over 200 time steps. Total 

cost for scenario 2 is more than total cost for the base scenario. 
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3.5.2.1 Result with WGS capacity limitation in scenario 2 

The scenario 2 model has been run again with WGS capacity. WGS capacity is 1600 biopsies per 

year.[1] In this model there is one WGS facility and the capacity limit has been considered 4 per 

day.       

(a)                                                                                                        (b)        

Figure 20: Trends in cumulative diagnosed patient for all hospitals in scenario 2 without WGS capacity (a) and with 

WGS capacity (b) 

Figures 20 depict the count of diagnosed patients across all hospitals over 200-time steps. The key 

distinction between these two figures lies in the WGS Capacity. When the capacity of the WGS 

facility is accounted for, there is a reduction in the total number of diagnosed patients.  

       (a)                                                                                    (b) 

Figure 21:Trends in cost analysis for all hospitals in 

scenario 2 without WGS capacity (a) and with WGS capacity (b) 

Figures 21 illustrates the total cost for all hospitals without and with WGS capacity. Comparing 

these two graphs reveals that the total cost is higher when WGS capacity is not implemented. 
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Specifically, the total cost with WGS capacity is 5,230,000 while the total cost without WGS 

capacity is 6,970,000. 

3.5.3 Comparative analysis for number of diagnosed patients 

Here is a table which shows the number of diagnosed patients in different scenarios with and 

without WGS capacity. 

Table 3: Comparison of Total diagnosed patients for Hospitals with and without WGS Capacity under Different 

Scenarios. 

 Without WGS Capacity With WGS Capacity 

Base Scenario 3229 2859 

Scenario 2 3356 2437 

 

As shown in table 2, sending patients to WGS facility sooner can increase the number of diagnosed 

patients but sending everybody is not optimal as the capacity limit may cause people to wait even 

longer. 

3.5.4 Comparative analysis for total cost 

Table 3 shows total cost in different scenarios with and without WGS capacity. 

Table 4: Comparison of Total cost for Hospitals with and without WGS Capacity under Different Scenarios. 

 Without Capacity Cost per diagnosed With Capacity Cost per diagnosed 

Base Scenario 5,200,000 1610 4,356,415.97 1523 

Scenario 2 6,970,000 2076 5,230,000 2146 
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As shown in table 3, the cost is still higher if we send everybody to WGS. Also implementing 

WGS capacity results in a decrease in total cost. This is because some patients are placed in a 

queue, causing delays before they can proceed to the WGS test. 

3.5.5 Comparing Scenarios without WGS Capacity 

We compared the base scenario and scenario 2 in terms of total diagnosed patients, total cost, and 

the ratio of total diagnosed patients to total cost, as shown in three graphs. In this comparison, we 

considered no WGS capacity for the WGS facility. We defined a parameter named alpha. Alpha 

is a parameter that specifies the proportion of patients being referred to teaching or academic 

hospitals. When alpha equals 1, patients follow the base scenarios. When alpha equals 0, all 

patients are directly referred to academic hospitals from general hospitals. 

3.5.5.1 Comparing diagnosed patients for two scenarios 
                                                    

 

 

 

 

 

                                                                   

Figure 22: Total diagnosed patients for all hospitals. 

Figure 22 shows the cumulative number of diagnosed patients over time for two different alpha 

values (0 and 1). When alpha equals 1, patients follow the base scenarios which is sending patients 

to teaching hospital from general hospital. When alpha equals 0, all patients are directly referred 
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to academic hospitals from general hospitals. The graph indicates that the cumulative number of 

diagnosed patients is higher when patients are referred to academic hospital from general hospital. 

This suggests that the parameter controlled by the alpha value influences the rate at which patients 

are diagnosed, with alpha_value = 0 resulting in a higher cumulative total diagnosed patient. For 

this graph, we have considered the time steps from step 50. 

3.5.5.2 Comparing total cost for two scenarios 

 

 

 

 

 

 

 

 

Figure 23: Comparative analysis of cost for two scenarios. 

Figure 23 shows the cumulative total cost over time for two different alpha values (0 and 1). The 

graph indicates that the cumulative total cost is higher when the alpha value is 0  (direct referral 

from general hospital to academic hospital) compared to when it is 1(referral from general hospital 

to academic hospital). This suggests that the parameter controlled by the alpha value ,which is the 

direct referral from general hospital to academic hospital (scenario 2), influences the total cost, 

with alpha_value = 0 resulting in a higher cumulative total cost. For this graph, we have considered 

the time steps from step 50. 
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3.5.5.3 Comparing a ratio for two scenarios 

 

                                                          

 

 

 

 

 

 

 

Figure 24: Comparative ratios for two scenarios 

Figure 24 displays the ratio of the cumulative number of diagnosed patients to the cumulative total 

cost over time for two different scenarios: alpha = 0 and alpha = 1. The results indicate that alpha 

= 1 maintains a higher efficiency in terms of diagnosis per unit cost compared to alpha = 0. This 

finding highlights the importance of the alpha parameter in optimizing the cost-effectiveness of 

diagnostic strategies in the simulation. Understanding this impact is crucial for making informed 

decisions on resource allocation and improving the overall efficiency of healthcare interventions. 

3.5.6 Comparing Scenarios with WGS Capacity 

We compared the base scenario and scenario 2 in terms of total diagnosed patients, total cost, and 

the ratio of total diagnosed patients to total cost, as shown in three graphs. In this comparison, we 

considered a WGS capacity for the WGS facility which is 4 per day. 
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3.5.6.1 Comparing diagnosed patients for two scenarios 

Figure 25: Comparative analysis of diagnosed patients for two scenarios. 

Figure 25 shows the cumulative number of diagnosed patients over time for two different alpha 

values (0 and 1). The graph indicates that the cumulative number of diagnosed patients is higher 

when the alpha value is 1 compared to when it is 0. This suggests that the base scenario has a 

greater number of diagnosed patients when WGS capacity is applied. For this graph, we have 

considered the time steps from step 50. 

3.5.6.2 Comparing total cost for two scenarios 

Figure 26:  Comparative analysis of total cost for two scenarios. 
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Figure 26 shows the cumulative total cost over time for two different alpha values (0 and 1). The 

graph indicates that the cumulative total cost is higher when the alpha value is 0 compared to when 

it is 1. This suggests that the parameter controlled by the alpha value ,which is the direct referral 

from general hospital to academic hospital (scenario 2), influences the total cost, with alpha_value 

= 0 resulting in a higher cumulative total cost. For this graph, we have considered the time steps 

from step 50. 

3.3.6.3 Comparing a ratio for two scenarios 

Figure 27: Comparative analysis of ratios for two scenarios. 

Figure 27 displays the ratio of the cumulative number of diagnosed patients to the cumulative total 

cost over time for two different scenarios: alpha = 0 and alpha = 1. The graph provides a clear 

comparison of the ratio of total diagnosed patients to total cost for two different alpha values. The 

results indicate that alpha = 1 maintains a higher efficiency in terms of diagnosis per unit cost 

compared to alpha = 0. 

3.5.7 Sensitivity Analysis on WGS Capacity 

Alpha is a parameter that specifies the proportion of patients being referred to teaching or academic 

hospitals. When alpha equals 1, patients follow the base scenarios. When alpha equals 0, all 

patients are directly referred to academic hospitals from general hospitals. After analyzing the base 
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scenario and scenario 2 with and without WGS capacity, we observed that applying WGS capacity 

to the model results in a reduction in the number of diagnosed patients. Additionally, the base 

scenario has more diagnosed patients when WGS capacity is implemented. In contrast, without 

WGS capacity, scenario 2 has more diagnosed patients. Consequently, we conducted a sensitivity 

analysis on WGS capacity. We conducted a sensitivity analysis for different WGS capacities set 

at 4, 8, 16, and 32.  

(a)                                                                                     (b) 

 

 

 

( 

       (c)                                                                                      (d)                                                                   

Figure 28: Comparative analysis of diagnosed patients.        

   

 

 

 

 



 
 

49 
 

Table 5: Comparison of Total diagnosed patients for Hospitals with and without WGS Capacity under Different 

Scenarios.       

WGS Capacity 4 8 16 32 

Base Scenario 2859 3139 3200 3264 

Scenario 2 2437 2905 3328 3305 

                                                                                                                                                              

Here is the table comparing different WGS capacities. The difference between a WGS capacity 

of 32 and unlimited capacity is minimal, so it may be more practical to set the WGS capacity to 

32 instead of unlimited. 

3.6 Conclusion 

ABS offers a robust and dynamic framework for addressing the complexities inherent in healthcare 

systems, specifically when analyzing the intricate interactions between hospitals. By 

conceptualizing hospitals as autonomous agents with distinct behaviors and interaction patterns. 

Within this ABS framework, our analysis has highlighted that Scenario 2 sees a higher number of 

patients successfully diagnosed when the WGS capacity is 32 per day. 

 

 

 

 

 

 

 



 
 

50 
 

CHAPTER IV: AGENT BASED MODEL WITH CONSIDERING 

PATIENTS AS AGENTS 
In Chapter IV, the model is extended to include patients as agents, introducing a new agent class 

named ‘Patient’. The reason that we considered a different agent class for patient is that it allows 

us to track each patient's diagnostic pathway individually and considers the possibility of patient 

death due to prolonged waiting times for diagnosis. Additionally, it provides a more accurate 

calculation of the total cost by accounting for waiting times. Despite this significant change, the 

behavior of the hospital and other parameters—such as the cost of biomarker tests, processing 

time, and WGS capacity—remained unchanged. The primary difference between the models in 

Chapters III and IV lies in the inclusion of patients as active agents in the simulation, providing a 

more comprehensive analysis of the system's behavior.                                                                                              

4.1 Model’s Assumptions     

In the Chapter IV model, we have made a few changes, such as considering patients as an agent, 

defining a death rate. Other assumptions remain the same as in the model in Chapter III.                                                             

Here are the agents with their attributes: 

 

 

 

  

 

 

 

 

                                                                                                                                                                                              

Figure 29: Agent’s Attributes 

General 

Hospital 

Teaching 

Hospital 
Academic 

Hospital 

WGS 

Facility 
Hospital 

Average Time: 15 Days 

Cost Per Patient: 334.14  

Patient Acceptance Rate: 0.6 

Testing Success Probability: 0.58 Average Time: 15 Days 

Cost Per Patient: 536.02  

Patient Acceptance Rate: 0.29 

Testing Success Probability: 0.6 

Average Time: 18 Days 

Cost Per Patient: 536.02 

Physician Willingness: 0.9 

Patient Acceptance Rate: 0.11 

Testing Success Probability: 0.6 

Average Time: 14 Days 

Cost Per Patient: 2925.25 

Testing Success Probability: 0.66 

WGS Capacity:  1600 biopsies per year 

 

Patient 
Death cost Per Patient: 100000  

Patient Death Rate: 0.0573 
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4.1.1 Agent-Based Patient Distribution 

In this model, we have considered patients as an agent class. For each patient, a random location 

is generated in a continuous space, and they will visit general, teaching, or academic hospitals 

based on their proximity. Annually, the expected number of patients is 5,313. Given this, we have 

modeled 3,400 patients over 200-time steps, with 60% visiting General Hospitals, 29% visiting 

Teaching Hospitals, and 11% visiting the Academic Hospital [1]. 

4.1.2 Patient Mortality Considerations in Stage IV NSCLC 

In the latest ABS model, which includes patients as agents, we also account for the probability of 

patients dying before receiving a diagnosis. Since the patients are in stage IV NSCLC, they are 

particularly vulnerable. At each step, the model checks if the patients are alive or dead. If a patient 

is dead, they do not proceed to the next step in the model and a huge cost is added to the patient’s 

cost. We should mention this point that the results for comparing scenarios are without and with 

death probability. It means that one time we do not consider a death rate probability for patients, 

and we run the model with this assumption that patients are alive in the simulation, and they do 

not die, and one more time we assume that patients die in the simulation and we define a probability 

for death which we explain more in the section which is the results with death rate probability.   

4.1.2.1 Survival Rate in Non-small-cell Lung Cancer 

Survival rates for stage 4 lung cancer vary based on the type of lung cancer, either non-small cell 

lung cancer or small cell lung cancer. In this research, we are focusing on non-small cell lung 

cancer (NSCLC). The extent of its spread and the individual's overall health also plays a significant 

role. According to the American Cancer Society, NSCLC is the most prevalent type, accounting 

for about 80 to 85 percent of cases. Their data indicates that the five-year survival rate for 



 
 

52 
 

individuals with stage 4 NSCLC, where the cancer has spread to distant parts of the body, is 9 

percent [26]. 

4.1.2.2 Calculating the Death Rate from Survival Rate 

The survival rate provided is for a five-year period. Specifically, for individuals with stage 4 

non-small cell lung cancer (NSCLC), the five-year survival rate is 9%. This means that 9% of 

individuals diagnosed with stage 4 NSCLC are expected to survive for at least five years after 

their diagnosis. 

To calculate the death rate, we need to determine the proportion of individuals who do not survive 

the five-year period. The death rate is essentially the complement of the survival rate. The five-

year survival rate (SR) is 9%. The death rate is the percentage of individuals who do not survive 

for five years. Here's how we can calculate it: 

Death Rate = 100% - Survival Rate   

Death Rate = 100% - 9% 

Death Rate = 91% 

Therefore, the five-year death rate for individuals with stage 4 NSCLC is 91%. To accurately 

model the progression of stage 4 non-small cell lung cancer (NSCLC) on a daily basis, it is 

essential to convert the five-year survival rate into a daily survival rate. The five-year survival rate, 

which is 9% for stage 4 NSCLC, represents the proportion of patients expected to survive five 

years post-diagnosis. This rate must be translated into a daily probability to be used in a day-by-

day simulation model. The conversion involves calculating the daily survival rate (DSR) by taking 

the 1825th root of the five-year survival rate, as there are 1825 days in five years (5 years × 365 

days/year). Mathematically, this is expressed as DSR = (5Y SR)^(1/1825). For a five-year survival 
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rate of 0.09, the DSR is approximately 0.999427, indicating that each day, a patient has a 99.9427% 

chance of surviving. Consequently, the daily death rate (DDR) is  1 - DSR, or approximately 

0.0573%. This daily rate allows for a realistic and granular simulation of patient outcomes over 

time, aligning with the long-term survival statistics.                                

Five years: 5 years × 365 days = 1825 days 

Daily Survival Rate (DSR): (DSR)1825  = 5Y SR 

DSR = 0.091/1825  = 0.999427 

The daily survival rate (DSR) is approximately 0.999427. This means that each day, a patient has 

a 99.9427% chance of surviving. Conversely, the daily death rate (DDR) is: 

DDR = 1−DSR ≈ 1 − 0.999427 = 0.000573 or 0.0573% 

4.2 Comparing scenarios with WGS Capacity & Death Rate  

We have included 3,400 patients in our model. The distribution of facilities consists of 6 General 

Hospitals, 3 Teaching Hospitals, 1 Academic Hospital, and 1 WGS facility. Annually, the expected 

number of patients is 5,313. Given this, we have modeled 3,400 patients over 200-time steps, with 

60% visiting General Hospitals, 29% visiting Teaching Hospitals, and 11% visiting the Academic 

Hospital. Since patients are considered as agents in our model, each patient is assigned a random 

location. Both hospital and patient locations are generated randomly within a continuous space, 

and patients choose hospitals based on proximity [1]. We have considered a death rate for patients, 

but we do not have include a cost for death and waiting time in this section. As explained in Section 

4.1.2.2, the daily death rate (DDR) is 0.0573. 
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In the base scenario, patients are referred from General Hospital to Teaching Hospitals, and from 

Teaching Hospitals to Academic Hospitals if they have not been diagnosed. We have introduced 

a parameter called alpha. When alpha is equal to 1, it indicates that patients are referred to Teaching 

Hospitals from General Hospitals and when it is equal to 0, it indicates that patients are referred to 

Academic Hospitals from General Hospitals. Also, the WGS capacity is equal to 4 per day. 

 = 1                       Refer patients to Teaching Hospital (Base Scenario)                                       

 = 0                       Refer patients to Academic Hospital (Scenario 2)                                                                                                                                  

4.2.1 Hospital and Patient Position 

In this chapter, we have considered patients as agents and here is the code for initializing patient 

agent class:  

                                                       

 

 

 

                                                   

Figure 30: Python code for patient agent class.       

Figure 30 shows how we define the PatientAgent class. Parameters for the PatientAgent class 

include entry time, diagnosed_status, and others. 
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Figure 31: Code for initializing patient agent class 

Figure 31 shows the code for initializing patient agent including the location of patients which 

has been generated randomly in a continuous space. Initializing hospitals are the same as the 

patient’s agent as we have explained the hospital initialization in chapter 3. 

Here is the map of hospitals and patients’ position: 

   

 

 

                  

                                                                                                                                                                                        

Figure 32: Map of hospital & patients’ positions. 

Figure 32 shows the randomly generated locations of various hospitals. The red ball indicates 

general hospitals, marked at six different locations. The green ball represents teaching hospitals, 

with three distinct locations. The blue and yellow balls indicate the locations of an academic 

hospital and a WGS facility, respectively, each at a single location. Black points represent patients 

who randomly visit hospitals. 

4.2.2 Comparing diagnosed patients for both scenarios 
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Here is the graph for comparing number of total diagnosed patients for both scenarios: 

 

 

 

 

 

                                                                                   

Figure 33: Comparative analysis diagnosed patients for two scenarios                                                                                                             

Figure 33 indicates that the base scenario (alpha_mode = one) results in a higher cumulative 

number of diagnosed patients compared to the scenario 2 (alpha_mode = zero). The time step unit 

in this simulation is considered to be a day. This means that 200-time steps are equal to 200 days. 

4.2.3 Comparing dead patients for both scenarios 

 

 

 

 

 

 

 

 

                                                                           

                                                                                

Figure 34: Comparative analysis of dead patients for two scenarios. 

Figure 34 displays the cumulative number of dead patients over time for two different scenarios: 

labeled "alpha_mode = zero"(scenario 2)  and "alpha_mode = one" (base scenario). The graph 
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illustrates that the choice of alpha mode influences the cumulative number of dead patients over 

time. Specifically, the base scenario results in a higher number of dead  patients compared to 

scenario 2. The number of dead patient for the base scenario is 2041 and the number of dead 

patients for the scenario 2 is 1985. 

4.2.4 Comparing total cost for both scenarios                                                      

Before diving into the graph, the method for calculating the total cost is explained below. The 

mathematical formulas used to calculate the cost are provided here. First, we calculate the cos 

per patient as below: 

𝑃𝑗 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑃𝑎𝑡𝑖𝑒𝑛𝑡       𝑗 ∈ 𝐽 

𝑃𝑗 =   𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑜𝑛 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑗 + 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑓𝑜𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡

+  𝑐𝑜𝑠𝑡 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑑𝑖𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 𝑜𝑓 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑝𝑟𝑜𝑐𝑒𝑠𝑠. 

Example: 

Patient 1 visited General Hospital 1 without being diagnosed, referred to teaching hospital 2 and 

being diagnosed at teaching hospital 2.  

Cost of tests performed on patient number 1 = 334.14 + 536.02 = 870.16 

Cost of waiting for patient 1 = 100 * 30 = 3000 

Cost of Death = 0 

Cost of each patient (𝑃𝑗) = 870.16 + 3000 + 0 = 3870.16 

 

Then we calculate cost for hospital based on the cost of each patient: 

𝐶𝑖 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙          𝑖 ∈ 𝐼 

𝑃𝑗 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑃𝑎𝑡𝑖𝑒𝑛𝑡 𝑗                      𝑗 ∈ 𝐽𝑖                  
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 𝐽𝑖 = 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑣𝑖𝑠𝑖𝑡𝑖𝑛𝑔 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑖 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡𝑖𝑚𝑒    𝑖 ∈ 𝐼 

𝐶𝑖 =  ∑ 𝑃𝑗

𝑗 ∈𝐽𝑖

 

Here is the graph for comparing the total cost for both scenarios: 

 

                                                                                   

 

 

 

 

 

Figure 35: Comparison of cumulative total cost for two scenarios 

Figure 35 presented a comparison of the cumulative total cost over time for two different alpha 

modes, labeled alpha_mode = zero (scenario 2) and alpha_mode = one (base scenario).  The graph 

shows that cumulative total cost of scenario 2 is higher than the base scenario. 

4.2.5 Comparing ratios for both scenarios 

Here is the graph for comparing base scenario and scenario 2: 

 

 

 

 

Figure 36: Comparative analysis of ratios of two scenarios.                                                                                                               
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Figure 36 indicates that the base scenario maintains a higher ratio of diagnosed patients to total 

cost, implying greater efficiency in terms of cost-effectiveness.  

4.3 Comparing scenarios with Cost per Death & Waiting Time 

In this section, we compare the results for the base scenario and scenario 2, considering the death 

rate and associated death cost for patients. As explained in Section 4.1.2.2, the daily death rate 

(DDR) is 0.0573. Additionally, we have factored in a death cost of 100000 per patient and cost of 

waiting time 100 per day, and WGS capacity is equal to 4 per day. 

4.3.1 Comparing diagnosed patients for both scenarios under waiting time cost and 

death cost 

(a)                                                                                 (b) 

 

 

 

 

 

 

 

 

 

Figure 37: Comparative analysis of diagnosed patients – without death and waiting cost and (a) & with death and 

waiting cost (b) 

Figure 37 presented a comparison of the cumulative total diagnosed patients over time for two 

different alpha modes, labeled alpha_mode = zero (scenario 2) and alpha_mode = one (base 

scenario). The graph illustrates that when we consider a cost for death and cost for waiting time, 

the scenario 2 has a greater number of diagnosed patients.  
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4.3.3 Comparing total cost for both scenarios under waiting time cost and death cost                                               

(a)                                                                             (b) 

 

 

 

 

 

 

 

Figure 38: Comparative analysis of cost for two scenarios – without death and waiting cost and (a) & with death and 

waiting cost (b) 

Figure 38 displays the cumulative total cost over time for two different scenarios labeled 

"alpha_mode = zero"(scenario 2)  and "alpha_mode = one" (base scenario). The graph provides a 

clear comparison of the cumulative total cost for two different alpha modes. Despite the different 

settings (alpha_mode=zero and alpha_mode=one), the results are very similar, indicating that this 

particular parameter does not have a substantial effect on the cumulative total cost in the 

simulation. 

4.3.4 Comparing ratios for both scenarios 

(a)                                                                                          (b) 

 

Figure 39: Comparative analysis of ratios – without death and waiting cost (a) and with death and waiting cost (b) 
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Figure 39 presents a comparison of the ratio of the total diagnosed to the total cost over time for 

two different alpha modes, labeled alpha_mode = zero (scenario 2) and alpha_mode = one (base 

scenario). Figure 38 (a) presents the ratio without considering death and waiting cost which in this 

situation, the base scenario is better. Figure 38 (b) shows the ratio with considering death and 

waiting cost per patient and in this situation the scenario 2 is better which is sending patient to 

academic hospital directly from general hospital. It means, when death and waiting have costs, it 

is better to send patients to academic hospital directly from general hospital. 

4.4 Sensitivity Analysis on WGS Capacity   

For both the base scenario and scenario 2, we performed a sensitivity analysis on the WGS 

capacity, varying it from 4 to 1000. Here is the result: 

 

Figure 40: Comparative analysis of diagnosed patients for two scenarios. 

Figure 40 presents the cumulative total diagnosed patients over time for two different alpha modes, 

labeled alpha_mode = zero(scenario 2)  and alpha_mode = one (base scenario).  When we changed 

the WGS capacity to 1000, scenario 2 has a greater number of diagnosed patients in comparison 

with the base scenario. The number of diagnosed patients for the base scenario us 1915 and for the 
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scenario 2 is 2196 which both are more than the diagnosed patients when the WGS Capacity was 

4.  

4.5 Conclusion 

 After a series of analysis and implementing death rate with cost and also considering a cost for 

waiting time which make the model more realistic, we concluded that scenario 2 which is direct 

referral from general hospital to academic hospital works better, when we consider a cost for death 

and waiting time. 
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CHAPTER V: AGENT BASED MODEL AND APPLICATION OF GAME 

THEORY 

5.1 Scenarios with different alpha values 

5.1.1 Comparing diagnosed patients with different alpha values 

We have considered different alpha values and run the model to see which alpha would be better. 

Alpha is a parameter which determines the proportion of patients for sending to teaching or 

academic hospitals. Alpha is not only zero and one in this analysis, we want to see the other value 

as well between zero and one. 

 

Figure 41: Comparative analysis of diagnosed patients for different alpha. 

Figure 41 depicts the cumulative number of diagnosed patients over a time span of 200 steps, with 

each step representing one day. The model runs simulations for various alpha modes ranging from 

0 to 1. This graph effectively illustrates how varying the alpha mode impacts the cumulative 

number of diagnosed patients over time in the simulation. By comparing these trends, researchers 

can analyze the influence of different model parameters and configurations on patient diagnosis 

rates. The distinct colors and labels help in easily distinguishing and comparing the results across 

different alpha modes. 
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5.1.2 Comparing ratios with different alpha values 

Figure 42: Comparative analysis of ratios for different alpha values. 

Figure 42 illustrates how the ratio of diagnosed patients to the total cost evolves over a series of 

time steps under different alpha mode configurations. This metric provides insight into the 

efficiency and cost-effectiveness of diagnosing patients over time. his graph effectively 

demonstrates how the cost-effectiveness of diagnosing patients changes over time under different 

alpha mode settings. By comparing these trends, researchers can identify which configurations 

offer the best balance between diagnosing a high number of patients and maintaining manageable 

costs. 

5.2 Cost-Based Alpha Adjustment for General Hospitals Based on Evolutionary 

Game Theory 

In this model, we have generated a random alpha  for each General Hospital. Alpha shows the 

percentage of the individuals who are sent to teaching hospital after visiting a general hospital. For 

example, we have six General Hospitals, each with a different alpha. In the model class, when we 

initialize agents, we define alpha for the General Hospital class. When patients proceed to each 

hospital, we calculate the cost incurred at that hospital. Additionally, if a patient dies, we add the 
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cost of death, which is $100,000 for that patient. The same applies to the cost associated with 

waiting time. This calculation continues until the patient is diagnosed. We then calculate the 

minimum cost, and for each General hospital with the minimum cost, we obtain the alpha of that 

hospital which has the minimum cost, and we call that alpha  𝑎𝑚𝑖𝑛. The new alpha is calculated 

using the formula mentioned below: 

    𝐼: 𝑆𝑒𝑡𝑠 𝑜𝑓 General Hospitals     𝑖 = {1, 2, 3, 4, 5, 6} 

   𝐶𝑖: 𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑠   𝑖 ∈ 𝐼 

   𝐶𝑃𝑖: 𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡   𝑖 ∈ 𝐼    𝐶𝑃𝑖 =  
𝐶𝑖

𝑝
                   

     𝜆𝑖 =  
1

𝑒−(
𝐶𝑖

𝑝  ⁄ −  𝑚𝑖𝑛𝐶𝑖)
  

∗ = 𝜆𝑖𝑎𝑖    +  (1 − 𝜆𝑖)𝑎𝑚𝑖𝑛 

We then use this new alpha for other General Hospital agents. We also ran the model with alpha 

values of 1 and 0, as in Chapter III. Additionally, we proposed a new alpha adjustment to 

determine which approach works better. 
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Figure 43: Code for the game theory and cost adjustment 

Figure 43 shows how we have defined and coded the mathematical formula explained in section 

5.2. 

5.2.1 Model with Game Theory logic 

 

 

Figure 44: Analysis of total diagnosed to total cost for alpha equal to one, zero and random alpha. 

Figure 44 shows the cumulative total diagnosed to cumulative total cost for alpha equal to zero, 

one and random alpha. Alpha equal to zero is scenario 2 and alpha equal to one is the base scenario. 
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The green line shows the ratio for random alpha which is better than the base scenario and scenario 

2. This model has been run for 100 steps and we got the result excluding the first 50 steps. 

5.2.2 Alpha Analysis 

As we explained before, alpha is a parameter that determines the proportion of patients sent to 

teaching or academic hospitals. With this game theory model, we can find the alpha that results in 

more diagnosed patients at a lower cost. We have also considered WGS capacity, as well as the 

costs associated with death and waiting time. Here is a graph that shows how alpha converges to 

a specific value. 

 

Figure 45:Alpha convergence 

Figure 45 shows that alpha converges to 0.2, which means the proportion for sending patients to 

teaching hospital should be 20% and 80% of patients should be sent to academic hospital. 

5.3 Conclusion 

In chapter V, we explored various alpha values to determine the optimal configuration for 

distributing patients between teaching and academic hospitals. Unlike a binary approach, we 

considered a range of alpha values between 0 and 1 to understand their impacts more 

comprehensively. 
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CHAPTER VI: CONCLUSION 

This thesis has examined the implementation and impact of WGS in lung cancer diagnosis, 

utilizing innovative methodologies such as ABS and game theory to optimize healthcare strategies. 

WGS offers a comprehensive mapping of genetic information, identifying genetic variations 

linked to diseases like cancer and enabling personalized treatment approaches. Despite its limited 

use in the USA due to insurance complexities, WGS remains a valuable diagnostic tool in advanced 

healthcare settings. 

The study aimed to develop diagnostic policies that minimize costs and maximize the number of 

diagnosed patients by integrating ABS and game theory. These methodologies provide a robust 

framework for analyzing the intricate interactions between hospitals, conceptualizing each as an 

autonomous agent with distinct behaviors and interaction patterns. Through this analysis, it was 

found that direct referral from general hospitals to academic hospitals results in a higher number 

of diagnosed patients when the WGS capacity is 32 per day. By incorporating costs associated 

with death and waiting time, the model achieved greater realism, demonstrating the effectiveness 

of this referral strategy under these conditions. 

Additionally, the exploration of various alpha values provided insights into the optimal 

configuration for distributing patients between teaching and academic hospitals. By considering a 

range of alpha values between 0 and 1, the study identified the most efficient patient distribution 

strategy, balancing diagnosis rates and associated costs. 

In conclusion, this thesis demonstrated that integrating WGS with ABS and game theory can 

significantly enhance lung cancer diagnosis and treatment. By developing effective diagnostic 

policies that consider cost factors and patient distribution strategies, the study contributes valuable 
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insights for optimizing healthcare systems. The findings underscore the potential of WGS as a 

powerful diagnostic tool and the utility of advanced simulation techniques in improving healthcare 

outcomes. 
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APPENDICES 
 

Google Colab Code 

You can access the Google Colab code for this project at the following link: 

 

Chapter III Model: 

https://github.com/Hastighn/Lung-cancer-treatment--agent-based-model 

 

Chapter IV Model: 

https://github.com/Hastighn/lung-cancer-treatment-agent-based-modeling/tree/main 

 

https://github.com/Hastighn/Lung-cancer-treatment--agent-based-model
https://github.com/Hastighn/lung-cancer-treatment-agent-based-modeling/tree/main
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