Document Type


Publication Date


Subject: LCSH

Nanostructures, Polymers


Chemical Engineering | Chemistry


Hierarchical organization of carbon nanomaterials is the best strategy to combine desirable factors and synergistically impart mechanical and electrical properties to polymers. Here, we investigate the relaxation behavior of carbon nanofillers filled polyurethane (PU) with special reference to particle size and aspect ratio, filler morphology, filler loading to understand the conductive network formation of fillers in the PU matrix. Typically, an addition of 2 wt% hybrid fillers of graphene nanoplatelets (GNPs), conductive carbon black (CB) and multiwalled carbon nanotubes (MWCNTs) in PU at 1:1:2 mass ratio (GCM112-PU2) showed lowest surface resistivity ~106.8 ohm/sq along with highest improved mechanical properties.

Our results demonstrate how hierarchical compositions may function in polymer configurations that are useful for thermal and electrical systems.


This is the authors' accepted manuscript of the article published in Composites Part B. The version of record can be found at



Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Publisher Citation

Pokharel P, Xiao D, Erogbogbo F, Keles O, Lee DS, A hierarchical approach for creating electrically conductive network structure in polyurethane nanocomposites using a hybrid of graphene nanoplatelets, carbon black and multi-walled carbon nanotubes, Composites Part B (2018), doi:

Available for download on Saturday, November 28, 2020

Check your library