Document Type


Publication Date


Subject: LCSH

Solar stills


Civil and Environmental Engineering | Civil Engineering | Environmental Engineering


Experimental study was performed on a single basin active solar distillation system augmented with a solar collector using evacuated solar tubes. Field tests were conducted over several days under the climatic conditions of West Texas to evaluate the effect evacuated solar tubes have on the daily distillate yield rate. To investigate the feasibility of the solar tubes, active and passive solar stills with and without exterior insulation were examined. The maximum daily production rate for the active distillation system using evacuated solar tubes and the passive distillation system was 3.6 and 1.4 kg/m2day, respectively. The results showed the augmentation of the still with evacuated solar tubes increased its production capacity by a factor of 2.63. It also increased the maximum temperature of the water in the still basin by at least 20 °C. Economic analysis shows that it is feasible to use evacuated tubular collector coupled solar still as an alternative means for reclaiming water in farmlands with a payback period of approximately 6 years.


This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Green Energy on July 11, 2017, available online:



Publisher Citation

Issa, R. J., & Chang, B. (2017). Performance study on evacuated tubular collector coupled solar still in West Texas climate. International Journal of Green Energy, 14(10), 793-800.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.