Document Type
Article
Publication Date
1-15-2019
MeSH Terms
Happiness
Subject: LCSH
Happiness in youth, Happiness, System analysis--Data processing, Neural networks (Computer science), Higher education and state
Disciplines
Industrial Engineering | Mechanical Engineering
Abstract
The purpose of this study is to develop an analytical assessment approach to identify the main factors that affect graduate students' happiness level. The two methods, multiple linear regression (MLR) and artificial neural networks (ANN), were employed for analytical modelling. A sample of 118 students at a small non-profit private university constituted the survey pool. Various factors including education, school facilities, health, social activities, and family were taken into consideration as a result of literature review in happiness assessment. A total of 32 inputs and one output variables were identified during survey design phase. The following survey conduction, data collection, cleaning, and preparation; MLR and ANNs were built. ANN models provided better classification performance with over 0.7 R-square and a smaller standard error of estimate compared to MLR. Major policy areas to improve student happiness levels were identified as career services, financial aid, parking and dining services.
DOI
10.1504/IJADS.2019.098674
Repository Citation
Egilmez, Gokhan; Erdil, Nadiye O.; Arani, Omid Mohammadi; and Vahid, Mana, "Application of Artificial Neural Networks to Assess Student Happiness" (2019). Mechanical and Industrial Engineering Faculty Publications. 42.
https://digitalcommons.newhaven.edu/mechanicalengineering-facpubs/42
Publisher Citation
Egilmez, G., Erdil, N. Ö., Arani, O. M., & Vahid, M. (2019). Application of artificial neural networks to assess student happiness. International Journal of Applied Decision Sciences, 12(2), 115-140.
Comments
This is the authors' accepted version of the article published in International Journal of Applied Decision Sciences. The version of record can be found at http://dx.doi.org/10.1504/IJADS.2019.098674